Устройство и работа преобразователя

Сегодня мы ответим на вопросы по теме: "Устройство и работа преобразователя" с профессиональной точки зрения с комментариями и выводами. Просьба все вопросы задавать дежурному специалисту.

Что такое сварочный преобразователь: его строение и назначение

Разновидностью источника рабочего тока считается сварочный преобразователь, объединяющий в одном корпусе электродвигатель, генератор и выпрямитель. Такая установка используется при проведении строительно-монтажных работ, когда электросеть провисает и другие сварочные аппараты работают нестабильно. Сварка преобразователем проводится током в пределах 500 ампер, можно варить толстые заготовки, формировать сварочный шов от 10 до 30 мм глубиной. Преобразователь меняет напряжение, тип токовых характеристик.

Принцип работы

Строение у всех видов сварочных преобразователей типовое:

  • подводимый к асинхронному электродвигателю ток после включения установки преобразуется в механическую, которая подается на вал генератора;
  • генератор выдает необходимую частотность токовых параметров, в работе использован метод электромагнитной индукции, на вал насажен якорь с обмотками;
  • коллектор выполняет функцию выпрямителя, подает питание на выходные клеммы.

Сварочный преобразователь по сути – это комбинация электродвигателя, работающего от сети 220 или 380 В и генератора постоянного тока. Надежность преобразователя снижают вращающиеся узлы, велики энергопотери в процессе преобразования электротока.

Оборудование ценится за стабильность токовых характеристик вне зависимости от скачков подаваемого на двигатель напряжения. Регулятором рабочих характеристик является реостат, меняя число витков независимой обмотки изменяют ампераж. Выходной ток регулируется вручную по амперметру.

Чем отличается сварочный преобразователь от генератора

Генерирующие установки схожи по принципу формирования рабочего тока для сварки. Генератор работает от жидкого топлива, двигатель устанавливают бензиновый или дизельный. Топливный принцип работы необходим для полевых условий, когда приходится варить вдали от электромагистралей. Тепловая энергия трансформируется в электрическую без перехода в механическую.

Сварочный преобразователь оснащается только электромотором, подключаемым к однофазной или трехфазной сети. Установка сложнее генераторной, мотор и генератор тока связаны опосредовано – валом, передающим механическую энергию, получаемую из электрической.

Устройство

Детально рассмотреть устройство оборудования можно на примере стационарного сварочного преобразователя ПСО 500, выдающего два рабочих режима с максимальными токовыми характеристиками 300 или 500 ампер. Между ротором электромотора и якорем генератора, расположенными на одном валу, размещен вентилятор с крыльчаткой, обеспечивающей направленное охлаждение контактной зоны, где большая сила трения. Подшипники размещены в корпусе преобразователя, он обязательно заземляется.

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

Катушечный якорь генератора с 4-мя независимыми обмотками соединен с коллектором, пластины выпрямителя подключены к концам якорных обмоток. При вращении катушек между полюсами магнитов, возникает электромагнитная индукция, наводится переменный ток. Для обмотки используют отожженную медную или алюминиевую проволоку – металлы с хорошей электропроводностью. Для защиты от внешних электромагнитных полей и вихревых, возникающих при работе преобразователя, предусмотрен «фильтр» – электроемкость (два конденсатора, стабилизирующие напряжение).

Блок управления у преобразователя модульный. Для запуска сварочного преобразователя вмонтирован пакетник. Рядом размещен амперметр, по которому определяют токовые параметры. Прибор подключен к реостату, регулирующему рабочие токовые показатели (измеряет ампераж в цепи независимой обмотки возбуждения).

После включения преобразователя важно проверять направление вращения обмоток генератора. При необходимости запитывающие клеммы меняют местами, чтобы ротор вращался против часовой стрелки. Для требуемой величины рабочего тока перемычка фиксируется в положении «300 А» или «500 А» (это максимальное значение генерируемого электротока).

Классификация

Производители выпускают преобразователи разных модификаций. При выборе генерирующих установок учитывают вид сварки, предполагаемое место работы. Классификация источников тока для сварных работ проводится по нескольким признакам:

  • Количество сварочных постов. Однопостовые рассчитаны на подключение к одному аппарату, для работы одного сварщика. От многопостовых могут запитаться несколько сварщиков, выполнять работы одновременно на нескольких рабочих участках.
  • Конструктивно различаются по габаритам, виду исполнения. Бывают:

передвижные сварочные установки, оснащаются колесиками или подставными тележками;

стационарными, крепятся к фундаменту или устанавливаются непосредственно у рабочего места сварщика.

  • По количеству корпусов сварочные установки бывают одинарные или сдвоенные.
  • По разновидности токовых показателей:

с падающей вольт-амперной характеристикой (однокорпусные модели ПСО/однопостовые/ и ПСМ/многопостовые/ с асинхронными трехфазными двигателями) предназначены для ручной электродуговой сварки плавящимся или неплавящимся электродом с использованием защитных флюсов или газов;

с жесткой или пологопадающей ВАХ необходимы для аргоновой, полуавтоматической, автоматической сварки (модельный ряд источников тока типа ПСГ);

универсальные, работающие в различных режимах (установки ПСУ с регулируемыми вольт-амперными характеристиками).

От ВАХ зависит функциональность генерирующих установок. При выборе оборудования важно это учитывать.

  • По типу использованной технологии генерации:

якорь с расщепленными полюсами, отдельно монтируются обмотки намагничивания и размагничивания;

раздельные обмотки размагничивания наводят ток от независимого возбуждения.

Физические электромагнитные особенности оборудования несущественно сказываются на КПД.

Техника безопасности

Для работы с генерирующим электрооборудованием разработаны правила. Перед включением важно соблюдать несколько пунктов:

  1. Проверять систему заземления корпуса, это особенно актуально для мобильных установок, после транспортировки нужно убедиться, что заземление надежное.
  2. Щетки коллектора должны быть в порядке. Для проверки штурвал реостата сдвигают в крайнее положение, до упора (направление штурвала совпадает с движением обмоток – только против часовой стрелки).
  3. Следующий этап – установка токовых параметров, контролируют положение перемычки.
  4. Подключение к сети осуществляет электрик с допуском. Он зажимает клеммы на электродвигателе в соответствии правилами безопасности ПЭУ.
Читайте так же:  Служба судебных приставов узнать арест на имущество

Эксплуатационные требования ограничивают токовые характеристики:

  • допустимая рабочая нагрузка 40 В;
  • напряжение холостого хода не выше 85 В;
  • при работе в помещениях с повышенной загазованностью, влажностью, запыленностью допустимое напряжение снижают до 12 В.

Необходимы специальные защитные средства: диэлектрические резиновые коврики, перчатки. Сварщикам необходима спецодежда, защищающая глаза, лицо, кожу рук, ног от воздействия сварочной электрической дуги, расплавленного металла.

Источник: http://svarkaprosto.ru/oborudovanie/svarochnyj-preobrazovatel

Преобразователи напряжения. Виды и устройство. Работа

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжения могут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Устройство
Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:
  • Инвертирующие.
  • Повышающие.
  • Понижающие.
Общими для указанных видов преобразователей являются пять элементов:
  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:
  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

В иды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:
  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.
Преобразователи переменного тока в постоянный:
  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.
Преобразователи постоянного тока в переменный:
Преобразователи переменного напряжения:
  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.
Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:
  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.
Особенности
  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.
Читайте так же:  Алименты с пенсии мвд по выслуге
Применение
  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;

— автоматики в телемеханике, устройств связи, электробытовых приборов;
— радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

Источник: http://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/preobrazovateli-napriazheniia/

Частотный преобразователь для электродвигателя

Технические аспекты применения частотных преобразователей

В настоящее время, асинхронный электродвигатель стал основным устройством в большинстве электроприводов. Все чаще для управления им используется частотный преобразователь – инвертор с ШИМ регулированием. Такое управление дает массу преимуществ, но и создает некоторые проблемы выбора тех или иных технических решений. Попробуем разобраться в них более подробно.

Устройство частотных преобразователей

Разработка и производство широкой номенклатуры мощных высоковольтных транзисторных IGBT модулей предоставили возможность реализации многофазных силовых переключателей, управляемых непосредственно с помощью цифровых сигналов. Программируемые вычислительные средства позволили на входах коммутаторов сформировать числовые последовательности, обеспечивающие сигналы частотного управления асинхронными электродвигателями. Разработка и массовый выпуск однокристальных микроконтроллеров, обладающих большими вычислительными ресурсами, обусловили возможность перехода к следящим электроприводам с цифровыми регуляторами.

Силовые преобразователи частоты, как правило, реализуют по схеме, содержащей выпрямитель на мощных силовых диодах или транзисторах и инвертор (управляемый коммутатор) на IGBT транзисторах, шунтированных диодами (рис. 1).

Рис. 1. Схема частотного преобразователя

Входной каскад выпрямляет подаваемое синусоидальное напряжение сети, которое после сглаживания с помощью индуктивно-емкостного фильтра служит источником электропитания управляемого инвертора, вырабатывающего при действии команд цифрового управления сигнал с импульсной модуляцией, который формирует в обмотках статора токи синусоидальной формы с параметрами, обеспечивающими требуемый режим работы электродвигателя.

Цифровое управление силовым преобразователем осуществляется с помощью микропроцессорных аппаратных средств и соответствующим поставленным задачам программным обеспечением. Вычислительное устройство в режиме реального времени вырабатывает сигналы управления 52 модулями, а также производит обработку сигналов измерительных систем, контролирующих работу привода.

Силовые устройства и управляющие вычислительные средства объединены в составе конструктивно оформленного промышленного изделия, называемого частотным преобразователем.

В промышленном оборудовании применяются два основных вида частотных преобразователей:

фирменные преобразователи для конкретных типов оборудования.

универсальные преобразователи частоты предназначены для многоцелевого управления работой АД в задаваемых пользователем режимах.

Установку и контроль режимов работы частотного преобразователя можно производить с помощью пульта управления, оснащенного экраном для индикации введенной информации. В простом варианте скалярного регулирования частоты можно воспользоваться набором простых логических функций, имеющихся в заводских установках контроллера, и встроенным ПИД-регулятором.

Для осуществления более сложных режимов управления с использованием сигналов с датчиков обратных связей необходимо разработать структуру САУ и алгоритм, который следует запрограммировать с помощью подключаемого внешнего компьютера.

Большинство производителей выпускает целый ряд преобразователей частоты, отличающихся входными и выходными электрическими характеристиками, мощностью, конструктивным исполнением и другими параметрами. Для подключения к внешнему оборудованию (электросети, двигателю) могут быть использованы дополнительные внешние элементы: магнитные пускатели, трансформаторы, дроссели.

Типы сигналов управления

Необходимо делать различия между сигналами различных типов и для каждого из них использовать отдельный кабель. Различные типы сигналов могут оказывать влияние друг на друга. На практике такое разделение встречается часто, например кабель от датчика давления может быть подключен непосредственно к преобразователю частоты.

На рис. 2 приведен рекомендуемый вариант подключения преобразователя частоты при наличии различных цепей и сигналов управления.

Рис. 2. Пример подключения силовых цепей и цепей управления преобразователя частоты

Можно выделить следующие типы сигналов:

аналоговые — сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), значение которых меняется медленно или редко, обычно это сигналы управления или измерения;

дискретные сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), которые могут принимать только два редко изменяющихся значения (высокое или низкое);

цифровые (данные) — сигналы напряжения (0. 5 В, 0. 10 В), которые меняются быстро и с высокой частотой, обычно это сигналы портов RS232, RS485 и т.п.;

релейные — контакты реле (0. 220 В переменного тока) могут включать индуктивные токи в зависимости от подключенной нагрузки (внешние реле, лампы, клапаны, тормозные устройства и т.д.).

Читайте так же:  Хоум кредит просрочка платежа штрафы

Выбор мощности частотного преобразователя

При выборе мощности частотного преобразователя необходимо основываться не только на мощности электродвигателя, но и на номинальных токах и напряжениях преобразователя и двигателя. Дело в том, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным электродвигателем в стандартном применении.

Реальные приводы имеют много аспектов, которые могут привести к росту токовой нагрузке привода, например, при пуске. В общем случае, применение частотного привода позволяет снизить токовые и механические нагрузки за счет плавного пуска. Например, пусковой ток снижается с 600% до 100-150% от номинального.

Работа привода на пониженной скорости

Необходимо помнить, что хотя частотный преобразователь легко обеспечивает регулирование по скорости 10:1, но при работе двигателя на низких оборотах мощности собственного вентилятора может не хватать. Необходимо следить за температурой двигателя и обеспечить принудительную вентиляцию.

Поскольку частотный преобразователь мощный источник высокочастотных гармоник, то для подключения двигателей нужно использовать экранированный кабель минимальной длины. Прокладку такого кабеля необходимо вести на расстоянии не менее 100 мм от других кабелей. Это минимизирует наводки. Если нужно пересечь кабели, то пересечение делается под углом 90 градусов.

Питание от аварийного генератора

Плавный пуск, который обеспечивает частотный преобразователь позволяет снизить необходимую мощность генератора. Так как при таком пуске ток снижается в 4-6 раз, то в аналогичное число раз можно снизить мощность генератора. Но все равно, между генератором и приводом должен быть установлен контактор, управляемый от релейного выхода частотного привода. Это защищает частотный преобразователь от опасных перенапряжений.

Питание трехфазного преобразователя от однофазной сети

Видео удалено.
Видео (кликните для воспроизведения).

Трехфазные частотные преобразователи могут быть запитаны от однофазной сети, но при этом их выходной ток не должен превышать 50% от номинального.

Экономия электроэнергии и денег

Экономия происходит по нескольким причинам. Во-первых, за счет роста косинуса фи до значений 0.98, т.е. максимум мощности используется для совершения полезной работы, минимум уходит в потери. Во-вторых, близкий к этому коэффициент получается на всех режимах работы двигателя.

Без частотного преобразователя, асинхронные двигатели на малых нагрузках имеют косинус фи 0.3-0.4. В-третьих, нет необходимости в дополнительных механических регулировках (заслонках, дросселях, вентилях, тормозах и т.д.), все делается электронным образом. При таком устройстве регулирования, экономия может достигать 50%.

Синхронизация нескольких устройств

За счет дополнительных входов управления частотного привода можно синхронизировать процессы на конвейере или задавать соотношения изменения одних величин, в зависимости от других. Например, поставить в зависимость скорость вращения шпинделя станка от скорости подачи резца. Процесс будет оптимизирован, т.к. при увеличении нагрузки на резец, подача будет уменьшена и наоборот.

Защита сети от высших гармоник

Для дополнительной защиты, кроме коротких экранированных кабелей, используются сетевые дроссели и шунтирующие конденсаторы. Дроссель, кроме того, ограничивает бросок тока при включении.

Правильный выбор класса защиты

Для безотказной работы частотного привода необходим надежный теплоотвод. Если использовать высокие классы защиты, например IP 54 и выше, то трудно или дорого добиться такого теплоотвода. Поэтому, можно использовать отдельный шкаф с высоким классом защиты, куда ставить модули с меньшим классом и осуществлять общую вентиляцию и охлаждение.

Параллельное подключение электродвигателей к одному частотному преобразователю

С целью снижения затрат, можно использовать один частотный преобразователь для управления несколькими электродвигателями. Его мощность нужно выбирать с запасом 10-15% от суммарной мощности всех электродвигателей. При этом нужно минимизировать длины моторных кабелей и очень желательно ставить моторный дроссель.

Большинство частотных преобразователей не допускают отключение или подключение двигателей с помощью контакторов во время работы частотного привода. Это производится только через команду стоп привода.

Задание функции регулирования

Для получения максимальных показателей работы электропривода, таких как: коэффициент мощности, коэффициент полезного действия, перегрузочная способность, плавность регулирования, долговечность, нужно правильно выбирать соотношение между изменением рабочей частоты и напряжения на выходе частотного преобразователя.

Функция изменения напряжения зависит от характера момента нагрузки. При постоянном моменте, напряжение на статоре электродвигателя должно регулироваться пропорционально частоте (скалярное регулирование U/F = const). Для вентилятора, например, другое соотношение – U/F*F = const. Если увеличиваем частоту в 2 раза, то напряжение нужно увеличить в 4 (векторное регулирование). Есть приводы и с более сложными функциями регулирования.

Преимущества использования регулируемого электропривода с частотным преобразователем

Кроме повышения КПД и энергосбережения такой электропривод позволяет получить новые качества управления. Это выражается в отказе от дополнительных механических устройств, создающих потери и снижающих надежность систем: тормозов, заслонок, дросселей, задвижек, регулирующих клапанов и т.д. Торможение, например, может быть осуществлено за счет обратного вращения электромагнитного поля в статоре электродвигателя. Меняя только функциональную зависимость между частотой и напряжением, мы получаем другой привод, не меняя ничего в механике.

Следует заметить, что хотя частотные преобразователи похожи друг на друга и освоив один, легко разобраться с другим, тем не менее, необходимо тщательно читать документацию. Некоторые производители накладывают ограничения на использование своей продукции, а при их нарушении снимают изделия с гарантии.

Источник: http://electricalschool.info/econom/721-chastotnyjj-preobrazovatel-dlja.html

Принцип работы частотного преобразователя для асинхронных двигателей

Асинхронные электродвигатели – самые распространенные электрические машины. Они отличаются простотой конструкции, дешевизной, высокой ремонтопригодностью, а также другими преимуществами. Они широко используются для привода промышленного оборудования, механизмов и устройств самого разного назначения. Сферу их применения несколько ограничивают высокие пусковые токи, затруднение регулирования скорости, ударные механические нагрузки на оборудование, соединенное с валом при пуске.

Читайте так же:  Кто гасит кредит после смерти заемщика

Частотные преобразователи позволяют осуществлять мягкий пуск электрических машин, ограничивать пусковые токи, синхронизировать момент силы на валу с моментом нагрузки, осуществлять точную регулировку скорости вращения, подключать трехфазные двигатели в однофазную сеть без конденсаторов.

Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.

Принцип действия частотных преобразователей

Принцип действия частотного регулирования основан на зависимости скорости вращения и момента силы на валу двигателя переменного тока от частоты напряжения питания. Частотные регуляторы изменяют частоту поданного на электродвигатель напряжения, тем самым регулируя скорость вращения ротора и момент силы.

Преобразование частоты может осуществляться несколькими способами. Схема преобразования частоты с непосредственной электрической связью с сетью представляет собой управляемый выпрямитель на тиристорах. Управляющий блок генерирует сигналы, поочередно отпирающие полупроводниковые устройства, подающие напряжение заданной частоты на обмотки электрической машины.

Такая схема отличается высоким к.п.д., обеспечивает стабильную работу двигателя при небольших скоростях вращения ротора, передачу генерируемой электроэнергии при торможении двигателя в сеть.

Однако, такие недостатки, как невозможность изменять частоту в большую сторону, наличие в выходном напряжении постоянной составляющей и субгармоник, вызывающих перегрев обмоток и появление электромагнитных помех, ограничивают сферы применения частотников с непосредственной связью.

Большинство современных частотных преобразователей построено на базе схем двойного преобразования. Такое техническое решение имеет следующие преимущества:

  • Возможность изменять частоту как в большую, так и меньшую сторону.
  • Выходное напряжение чистой синусоидальной формы.
  • Отсутствие высших гармоник.
  • Плавное, высокоточное регулирование частоты питающего напряжения двигателя.

Состоит такой преобразователь частоты из трех блоков:

  • Диодного или тиристорного выпрямителя с емкостными, индуктивными или комбинированными фильтрами. Этот узел осуществляет выпрямление сетевого напряжения и его сглаживание.
  • Инвертирующего блока. Этот элемент осуществляет обратное преобразование постоянного напряжения в переменное. Индуктивный элемент на выходе осуществляет фильтрацию постоянной составляющей, а также высокочастотных помех, наличие которых негативно сказывается на работе электродвигателя.
  • Управляющей схемы на базе микропроцессора. Основные ее функции – задание частоты выходного напряжения и тока. Частота тока на выходе инвертора определяется шириной или длительностью управляющих импульсов со схемы управления (широтно- или частотно- импульсная модуляция). Процессор также осуществляет связь с удаленными пунктами управления, автоматическое регулирование по обратной связи по механическим и электрическим характеристикам подключенной к нему электрической машины, а также другие функции.

Таким образом, при частотном регулировании питающее напряжение сначала преобразуется в постоянное, затем инвертируется в переменное напряжение требуемой частоты.

Выбор частотного преобразователя

При проектировании частотно-регулируемого электропривода необходимо учесть множество нюансов. При выборе частотника руководствуются следующими критериями:

Выбор частотного регулятора для промышленного оборудования делается на основании расчетов по специализированным методикам. Малейшие ошибки могут привести к авариям, которые могут иметь непредсказуемые последствия. Проектирование электропривода и выбор ПЧ целесообразно доверить специалистам по автоматизации. Правильный выбор частотника обеспечивает экономию электроэнергии до 40-50%, снижение затрат на ремонт и обслуживание электропривода и дает неплохой экономический эффект.

Источник: http://drives.ru/stati/princip-raboty-chastotnikakh-dlya-asinhronnyh-dvigatelej/

Принцип работы частотного преобразователя и критерии его выбора для потребителя

Краткое описание назначения, принципа работы и критериев выбора частотного преобразователя, как устройства управления асинхронным электродвигателем.

Асинхронный двигатель с короткозамкнутым ротором является сегодня самым массовым и надежным устройством для привода различных машин и механизмов. Но у каждой медали есть и обратная сторона.

Два основных недостатка асинхронного двигателя – это невозможность простой регулировки скорости вращения ротора, очень большой пусковой ток — в пять, семь раз превышающий номинальный. Если использовать только механические устройства регулирования, то указанные недостатки приводят к большим энергетическим потерям и к ударным механическим нагрузкам. Это крайне отрицательно сказывается на сроке службы оборудования.

В результате исследовательских работ в этом направлении родился новый класс приборов, позволивший решить эти проблемы не механическим, а электронным способом.

Частотный преобразователь с широтно–импульсным управлением (ЧП с ШИМ) снижает пусковые токи в 4-5 раз. Он обеспечивает плавный пуск асинхронного двигателя и осуществляет управление приводом по заданной формуле соотношения напряжение / частота.

Частотный преобразователь дает экономию по потреблению энергии до 50%. Появляется возможность включения обратных связей между смежными приводами, т.е. самонастройки оборудования под поставленную задачу и изменение условий работы всей системы.

Принцип работы частотного преобразователя

Частотный преобразователь с ШИМ представляет собой инвертор с двойным преобразованием напряжения. Сначала сетевое напряжение 220 или 380 В выпрямляется входным диодным мостом, затем сглаживается и фильтруется с помощью конденсаторов.

Это первый этап преобразования. На втором этапе из постоянного напряжения, с помощью микросхем управления и выходных мостовых IGBT ключей, формируется ШИМ последовательность определенной частоты и скважности. На выходе частотного преобразователя выдаются пачки прямоугольных импульсов, но за счет индуктивности обмоток статора асинхронного двигателя, они интегрируются и превращаются наконец в напряжение близкое к синусоиде.

Читайте так же:  Справка бк о доходах заполненный

Критерии выбора частотных преобразователей

Выбор по функциям Каждый производитель пытается обеспечить себе конкурентное превосходство на рынке. Первое правило для обеспечения максимума продаж – это низкая цена. Поэтому производитель стремиться включить в свое изделие только необходимые функции. А остальные предлагает в качестве опций. Прежде чем купить частотный преобразователь, определитесь, какие функции вам нужны. Стоит выбирать тот прибор, который имеет большинство необходимых функций в базовом варианте.

По способу управления

Сразу отбрасывайте те преобразователи, которые не подходят по мощности, типу исполнения, перегрузочной способности и т.д. По типу управления, нужно определиться, что выбрать, скалярное или векторное управление.

Большинство современных частотных преобразователей реализуют векторное управление, но такие частотные преобразователи дороже, чем частотные преобразователи со скалярным управлением.

Векторное управление дает возможность более точного управления, снижая статическую ошибку. Скалярный режим только поддерживает постоянное соотношение между выходным напряжение и выходной частотой, но например, для вентиляторов это вполне достаточно.

Векторное управление, начиная с момента его появления, стало чрезвычайно популярной стратегией управления асинхронными электродвигателями. В настоящее время большинство частотных преобразователей реализуют векторное управление или лаже векторное бездатчиковое управление (этот тренд встречается в частотных преобразователях, первоначально реализующих скалярное управление и не имеющих клемм для подключения датчика скорости).

Основной принцип векторного управления состоит в раздельном независимом регулировании тока намагничивания двигателя и квадратурного тока, которому пропорционален механический момент на валу. Ток намагничивания определяет величину потокосцепления ноля ротора и поддерживается постоянным.

В случае стабилизации скорости вращения уставка квадратурного тока вырабатывается с помощью отдельного ПИ-регулятора, входом которого является рассогласование между желаемой и измеренной скоростью вращения двигателя. Таким образом, квадратурный ток всегда устанавливается на минимальном уровне так, чтобы обеспечить достаточный для поддержания заданной скорости механический момент. За счет этого векторное управление обладает высокой энергетической эффективностью.

Если мощности оборудования примерно одинаковы, то выбирайте преобразователи одной фирмы с мощностью по мощности максимальной нагрузки. Так вы обеспечите взаимозаменяемость и упростите обслуживание оборудования. Желательно, чтобы сервис центр выбранного частотного преобразователя был в вашем городе.

По сетевому напряжению

Всегда выбирайте преобразователь с максимально широким диапазоном напряжений как вниз, так и вверх. Дело в том, что для отечественных сетей само слово стандарт может вызвать только смех сквозь слезы. Если пониженное напряжение приведет, скорее всего, к отключению частотного преобразователя, то повышенное может вызвать взрыв сетевых электролитических конденсаторов и входу прибора из строя.

По диапазону регулировки частоты

Верхней предел регулировки частоты важен при использовании двигателей с высокими номинальными рабочими частотами, например для шлифовальных машин ( 1000 Гц и более). Убедитесь, что диапазон частот соответствует вашим потребностям. Нижний предел определяет диапазон регулирования скорости привода. Стандарт – это 1:10. Если вам нужен более широкий диапазон, то выбирайте только векторное управление, запросите параметры привода у производителя. Даже заявленный предел от 0 Гц, не гарантирует устойчивую работу привода.

По количеству входов управления

Дискретные входы нужны для ввода команд управления (пуск, стоп, реверс, торможение и т.д.). Аналоговые входы необходимы для ввода сигналов обратной связи (регулировки и настройки привода в процессе работы). Цифровые входы нужны для ввода высокочастотных сигналов от цифровых датчиков скорости и положения (энкодеров). Количество входов много не бывает, но чем больше входов, тем сложнее систему можно построить, и тем она дороже.

По количеству выходных сигналов

Дискретные выходы используются для выхода сигналов о различных событиях (авария, перегрев, входное напряжение выше или ниже уровня, сигнал ошибки ит.д.). Аналоговые выходы используются для построения сложных систем с обратными связями. Рекомендации по выбору аналогичны предыдущему пункту.

По шине управления

Оборудование, с помощью которого вы будете управлять частотным преобразователем должно иметь ту же шину и количество входов выходов что и выбранный вами частотный преобразователь. Предусмотрите некоторый запас по входам и выходам для дальнейшей модернизации.

По сроку гарантии

Срок гарантии косвенно позволяет оценить надежность частотного преобразователя. Естественно, нужно выбирать частотный преобразователь с большим сроком. Некоторые производители оговаривают особо случаи поломок, которые не являются гарантийными. Всегда тщательно читайте документацию и посмотрите в интернете отзывы о моделях и производителях оборудования. Это поможет правильному выбору. Не жалейте денег на качественный сервис и обучение персонала.

По перегрузочным способностям

В первом приближении, мощность частотного преобразователя нужно выбирать на 10-15% больше мощности двигателя. Ток преобразователя должен быть больше номинального тока двигателя и чуть больше тока возможных перегрузок.

В описании на конкретный механизм обычно указывают токи перегрузок и длительность их протекания. Читайте документацию! Это вас развлечет, и возможно, обезопасит от поломок оборудования в будущем. Если для привода характерны еще и ударные (пиковые) нагрузки (нагрузки в течении 2-3 сек), то необходимо выбрать преобразователь по пиковому току. Опять возьмите запас 10%.
Смотрите также по этой теме: Частотные преобразователи VLT AQUA Drive для насосных установок

Видео удалено.
Видео (кликните для воспроизведения).

Источник: http://electricalschool.info/spravochnik/eltehustr/726-princip-raboty-chastotnogo.html

Устройство и работа преобразователя
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here