Устройство и работа пневматической системы

Сегодня мы ответим на вопросы по теме: "Устройство и работа пневматической системы" с профессиональной точки зрения с комментариями и выводами. Просьба все вопросы задавать дежурному специалисту.

Пневматический привод тормозов автомобиля

Пневматический привод колесных тормозов состоит из компрессора 1, воздушного баллона 7, манометра 6, тормозного крана 21, приводимого в действие педалью 26, тормозных камер 11, регулятора давления 28, предохранительного клапана 5 и трубопроводов 4, 27 и 9 с гибкими шлангами 10.

Привод тормозов колес осуществляется непосредственно тормозными камерами с помощью сжатого воздуха, запас которого содержится в воздушных баллонах.

Тормозная камера 11 состоит из корпуса с крышкой, между которыми зажата гибкая резино-тканевая диафрагма 17. Диафрагма опирается на шайбу, закрепленную на штоке 13. Шайба вместе с диафрагмой отжимается в исходное левое положение пружинами 12.

Шток диафрагмы соединен с рычагом 16 разжимного кулака. Тормозная камера через отверстие в крышке камеры, гибкий шланг 10 и трубопровод 9 соединяется с тормозным краном.

Тормозной кран служит для управления тормозами. В корпусе тормозного крана установлена гибкая металлическая диафрагма 20. Под диафрагмой размещается коромысло 19, посредством которого диафрагма воздействует своим штоком на впускной 25 и атмосферный 18 клапаны. Корпус крана закрыт крышкой, в которой установлен свободно толкатель 23, опирающийся через пружину 22 на диафрагму. Рычаг 24 установлен на оси. Рычаг коротким концом через регулировочный болт может воздействовать на толкатель 23.

Пневматический привод тормозов работает следующим образом.

При нажатии на педаль 26 ножного тормоза рычаг 24 поворачивается вокруг оси и через регулировочный болт нажимает на толкатель 23. Толкатель воздействует через пружину 22 на диафрагму 20 и прогибает ее вниз.

Коромысло 19 под воздействием диафрагмы перемещается вниз и приводит в действие клапаны. Атмосферный клапан 18 закрывается, а впускной 25 открывается и сообщает внутреннюю полость крана под диафрагмой с воздушным баллоном.

При этом сжатый воздух из баллона поступает через кран в тормозную камеру 11. В тормозной камере создается давление, под воздействием которого диафрагма 17, сжимая пружины 12, смещается вправо и через шток 13 и соединенный, с ним рычаг 16 поворачивает разжимной кулак. Разжимной кулак, поворачиваясь, раздвигает колодки, которые прижимаются к тормозному барабану, происходит торможение колеса.

Рис. Схема пневматического привода тормозов: 1 — компрессор; 2 — поршни компрессора; 3 — воздушный фильтр; 4, 9 и 27- трубопроводы; 5 — предохранительный клапан; 6 — манометр; 7 — воздушный баллон; 8 — кран для выпуска конденсатора; 10 — гибкий соединительный шланг; 11 — тормозная камера; 12 — пружина; 13 — шток диафрагмы; 14 — тормозные колодки; 15 — разжимной кулак; 16 — рычаг разжимного кулака; 17 — диафрагма; 18 — атмосферный клапан; 19 — коромысло; 20 — диафрагма тормозного крана; 21 — тормозной кран; 22 — пружина; 23 — толкатель; 24 — рычаг; 25 — впускной клапан; 26 — педаль ножного тормоза; 28 — регулятор давления

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

Тормозной кран является одновременно редуктором, поддерживающим определенное давление воздуха в тормозных камерах при торможении. Когда давление воздуха в полости под диафрагмой станет больше необходимой для нормального торможения величины, диафрагма, сжимая пружину. 22, приподнимется и впускной клапан прикроется, поступление воздуха из баллона прекратится.

Когда педаль тормоза отпущена, диафрагма тормозного крана поднимается и прекращается воздействие коромысла 19 на клапаны.

Под действием пружин впускной клапан 25 закроется, а атмосферный 18 — откроется. Полость тормозного крана разобщится с воздушным баллоном и сообщится с атмосферой.

Находящийся в тормозной камере сжатый воздух начнет выходить через тормозной кран в атмосферу.

Давление в тормозной камере резко снижается и диафрагма, возвращаясь под действием пружин 12 в первоначальное положение, повернет разжимной кулак в обратном направлении. Тормозные колодки под действием стяжной пружины отойдут от тормозного барабана, и торможение колес прекратится.

Необходимый для работы тормозного привода сжатый воздух нагнетается в баллоны пневматической системы автомобиля компрессором.

Компрессор представляет собой двухцилиндровый поршневой насос, устанавливаемый на кронштейне, прикрепленном к головке блока цилиндров двигателя.

Поршни 12, установленные в цилиндрах компрессора, через шатуны 15 соединены с коленчатым валом 17. Коленчатый вал компрессора приводится во вращение от коленчатого вала двигателя ременной передачей.

При вращении коленчатого вала поршни поочередно перемещаются вниз, создавая в цилиндрах разрежение. Когда поршень подойдет к нижней мертвой точке, он откроет впускные окна 13 в стенке цилиндра, соединив тем самым полость цилиндра с атмосферой, через воздушный фильтр 3 атмосферный воздух заполнит цилиндр.

При движении вверх поршень перекрывает впускные окна и сжимает воздух.

Рис. Компрессор: 1 — головка блока цилиндров компрессора; 2 — диафрагма; 3 — грибок; 4 — коромысло; 5 — спиральная пружина; 6 — разгрузочная камера; 7 — перепускная камера; 5 — регулировочный болт перепускного клапана; 9 — перепускной клапан; 10 — регулировочный болт нагнетательного клапана; 11 — нагнетательный клапан; 12— поршень; 13 — впускное окно; 14 — палец поршня; 15 — шатун; 16 — шарикоподшипник; 17 — коленчатый вал; 18 — блок цилиндров компрессора

Сжатый в цилиндрах воздух через нагнетательные клапаны 11 поступает по трубопроводу в воздушный баллон. Детали компрессора смазываются маслом, подаваемым из системы смазки двигателя по трубопроводу в торец коленчатого вала компрессора.

К шатунным подшипникам масло подводится по каналам, просверленным в коленчатом валу, а к поршневым пальцам — через каналы в шатунах.

Стенки цилиндров и коренные подшипники смазываются разбрызгиванием. Стекающее с деталей масло собирается в нижней части картера компрессора и по трубопроводу стекает в картер двигателя.

Головка 1 блока цилиндров компрессора охлаждается жидкостью, поступающей по трубопроводу из системы охлаждения двигателя.

Компрессор снабжен разгрузочным устройством, размещенным в головке блока его цилиндров, которое обеспечивает холостой ход компрессора при повышении давления в пневматической системе выше необходимого и регулирует количество и давление нагнетаемого в систему воздуха. В разгрузочной камере 6 помещена диафрагма 2, на которую опирается грибок 3. На стержень грибка в свою очередь опирается коромысло 4, которое своим вильчатым концом может воздействовать на два перепускных клапана, открывая их. При этом цилиндры компрессора сообщаются между собой.

Полость разгрузочной камеры под диафрагмой соединена трубопроводом с регулятором давления. Регулятор давления состоит из корпуса 9, шариковых клапанов 8 и пружины 3. Совместная работа разгрузочного устройства и регулятора давления заключается в следующем. Для обеспечения нормальной работы тормозов давление воздуха в системе пневматического привода должно поддержираться в пределах 6—7 кг/см2, что осуществляется с помощью регулятора давления и разгрузочного устройства компрессора.

Читайте так же:  Гибкое варьирование дебиторской и кредиторской задолженностью

Когда давление в пневматической системе станет выше 7 кг/см2, шариковые клапаны 8 регулятора давления, сжимая через шток 5 пружину 3, приподнимутся, открывая отверстие в нижнем гнезде и перекрывая отверстие в верхнем гнезде клапанов.

При этом воздух из баллона направится к компрессору, поступая в полость под диафрагмой 2 разгрузочного устройства. В разгрузочной камере 6 создается давление, под действием которого диафрагма 2 прогибается вверх и приподнимает грибок 3. Грибок своим стержнем воздействует через коромысло 4 на стержни перепускных клапанов. Клапаны открываются и сообщают между собой цилиндры. Воздух при сжатии переходит из одного цилиндра в другой. В результате давление в цилиндре оказывается недостаточным, чтобы открыть нагнетательный клапан, и воздух не подается в пневматическую систему автомобиля.

Рис. Регулятор давления: 1 — кожух; 2 — регулировочный колпак; 3 — пружина регулятора; 4 — упорный шарик пружины; 5 — шток клапана; 6 — гайка регулировочного колпака; 7 — седло регулятора; 8 — шариковые клапаны; 9 — корпус; 10 — фильтр; 11 — штуцер; 12 — канал

Когда давление в системе станет меньше 6 кг/см2, под действием пружины 3 регулятора давления шариковые клапаны 8 опустятся вниз, перекроют отверстие в нижнем гнезде и откроют — в верхнем. Поступление воздуха из баллона к компрессору прекратится, а находящийся в разгрузочной камере воздух через канал 12 в регуляторе давления выйдет в атмосферу.

Давление в разгрузочной камере снизится до атмосферного, и перепускные клапаны под действием пружин закроются. Компрессор начнет нагнетать воздух в баллоны.

Для предохранения от чрезмерного давления воздуха в случае неисправности регулятора давления в пневматической системе имеется предохранительный клапан. Он отрегулирован так, что при достижении давления воздуха в системе 9—10 кг/см2 шарик 6 приподнимается, сжимая пружину 4, и воздух из пневматической системы через отверстие в корпусе клапана выходит в атмосферу.

Рис. Предохранительный клапан: 1 — регулировочный винт; 2 — контргайка; 3 — стержень клапана; 4 — пружина; 5 — корпус; 6 — шарик клапана

Давление в пневматической системе контролируется манометром, установленным на приборном щитке в кабине автомобиля.

Источник: http://ustroistvo-avtomobilya.ru/tormoznaya-sistema/pnevmaticheskij-privod-tormozov-avtomobilya/

Устройство и работа пневматической тормозной системы

Многие водители, да и люди не имеющие машины знают, что легковой автомобиль во многом отличается от грузового. Речь идет не только о габаритах, весе машины или величине колес, конечно, имеется в виду именно технический аспект. В современных грузовиках очень многое устроено иначе, даже тормозная система тут стоит пневматическая, что в корне отличается от типичных для легковых машин дисковых тормозов. Именно о характеристиках, особенностях и отличиях данного типа систем мы и поговорим, ведь от понимания и исправности тормозов, а также их внутренних составляющих зависит ваша безопасность на дороге, особенно это касается водителей тяжелых грузовиков.

Принцип работы пневматической тормозной системы

Начнем, пожалуй, с того, что в основу работы пневматической тормозной системы заложен принцип использования силы сжатого воздуха, который сосредоточен в специальных баллонах и нагнетается при помощи компрессора. Этим она отличается от всех остальных типов узлов торможения и это ее основная особенность.

Если описывать работу данной тормозной системы совсем просто, то все выглядит следующим образом. Из специальных баллонов в компрессор системы под давлением подается определенное количество воздуха. Далее, после того, как водитель нажмет на педаль тормоза, усилие передастся к тормозному крану, который создаст давление в тормозных камерах.

Сами же камеры задействуются благодаря рычагу тормозного механизма, который в принципе и позволяет осуществить процесс торможения. Как только водитель отпустит педаль тормоза, рычаг ослабиться, перестанет действовать и весть остановочный процесс прекратится.

Детальное рассмотрение вопроса

Если немного углубится в принцип действия данного узла, все будет несколько интереснее. Тормозная система во время работы двигателя (движения автомобиля) накачивает воздух в баллоны, педаль тормоза при этом должна быть отпущена. Далее воздух под давлением устремляется к тормозному крану, а если к грузовику прикреплен прицеп, то от крана кислород по верхней секции переводится еще и в баллоны прицепа, образуя таким образом непрерывный контакт.

Как только водитель выжимает педаль тормоза, верхняя секция должны резко перекрыться, соответственно контактирование двух составляющих прерывается, и открывается тормозной кран. Далее, после открытия крана, воздух должен поступить пневматические камеры, и машина вместе с прицепом начинает торможение. Важный момент тут в том, что верхняя секция отвечает именно за приведение в работы тормозной системы прицепа.

За остановку тягача, в роли которого выступает сам грузовой автомобиль, отвечает нижняя секция тормозной системы. Действие тут происходит абсолютно аналогичное тому, что было описано в предыдущем абзаце, однако рассмотрим механизм действия еще более пристально.

После попадания воздуха в пневмокамеры, он начинает продавливать диафрагму. Она в свою очередь сжимает встроенную внутри пружину. Далее давление от воздушных толчков продавливает толкатель, и все усилие передается на рычаг разжимной кулачок. Затем, кулачок, а вернее установленный на нем валик, начинает поворачиваться и разводит тормозные колодки в стороны, таким образом, тормозная система заставляет машину останавливаться. Отпуская педаль тормоза, процесс оборачивается вспять, встроенные пружины возвращаются на свои места, а излишки воздуха уходят наружу.

Основные составляющие пневматической тормозной системы

Обсуждаемая тормозная система делится на несколько основных составляющих, благодаря которым весь узел может функционировать должным образом. Естественно, приведенный ниже список механизмов является неполным, но в нем, как уже говорилось, будет самое главное:

Стоит также сказать, что подавляющее большинство современных осушителей объединяют в себе помимо основных функций, еще и регенерирующую, а это значит, что в их комплектующие также входит и ресивер.

  • Тормозная система может быть снабжена еще одним интересным агрегатом, однако он задействуется далеко не везде, и имеет место быть в основном в серьезных комплектациях, называется он предохранителем от замерзаний. Принцип его работы и назначение очень просты, в холодное время года, данный девайс помешивает в баллоны со сжатым воздухом специальный химический состав. Таким образом, конденсат, который в любом случае будет присутствовать на деталях системы, не будет замерзать и создавать дополнительные проблемы.

Неисправности данной системы и их причины

После того, как был рассмотрен принцип работы пневматической тормозной системы, а также ее основные комплектующие, самое время сказать о возможных неисправностях, а их к сожалению может быть далеко не мало. Также стоит сказать, что большинство поломок не будут отличаться от неисправностей других типов систем, так что некоторые из них обойдем стороной.

  1. Нет реакции тормозов при нажатии тормозной педали. Такое неприятное явление возникает, если тормозная система не снабжается воздухом из баллонов или он там отсутствует совсем. В этом случае необходимо срочно провести диагностику компрессора и устранить проблему в кратчайшие сроки.
  2. Слишком большой тормозной путь. Тут все несколько проще, необходимо просто обратиться за помощью на СТО, где вам должны отрегулировать педаль тормоза, так как причина, скорее всего, в ее разболтанности.
  3. Тормоза действуют рассинхронизировано. В этом случае проблема кроется в разбеге зазоров на тормозных накладках. Лечение тоже довольно простое, приехать на СТО и проверить, чтобы тормозная система в этом месте была тщательно отрегулирована.
Читайте так же:  Обязанностей функциям дисциплинарной ответственности

Естественно, это самый малый список всех возможных неисправностей, но они встречаются чаще всего. В любом случае, если вы заметили, что с вашей тормозной системой что-то не в порядке, следует незамедлительно обратиться за помощью.

Вывод

Как видите, тормозная система, это крайне сложный и важный механизм для любого автомобиля, особенно для тяжелых и негабаритных грузовых машин. Так что знать принцип ее работы, всевозможные тонкости строения и наличие как можно более большого количества деталей этого узла, крайне важно. Эти знания помогут вам правильно реагировать на различные ситуации происходящие на дороге и действительно могут спасти не мало жизней.

Источник: http://autodont.ru/brake-system/ustrojstvo-i-rabota-pnevmaticheskoj-tormoznoj-sistemy

Пневматический исполнительный механизм

Пневматический исполнительный механизм — устройство, которое использует давление сжатого воздуха, чтобы произвести механическое движение. Движение, которое произведено, затем может использоваться, чтобы выполнить функцию перемещения регулирующего органа в системе автоматического регулирования.

Движение, вырабатываемое пневматическим исполнительным механизмом может быть использовано, например, для выбора положения вентиля, управляющего потоком пара, воды или других жидкостей. Для управления положением заслонки или жалюзи, течением воздуха или других продуктов технологического процесса.

Пневматический исполнительный механизм

Это наиболее распространенный тип исполнительных механизмов, используемых в автоматических системах регулирования технологических процессов.

Различаются три общих вида пневматических исполнительных механизмов, используемых в промышленности: мембранные исполнительные механизмы однонаправленного действия, мембранные исполнительные механизмы двойного действия и поршневые исполнительные механизмы.

Мембранный исполнительный механизм однонаправленного действия

Мембранный исполнительный механизм однонаправленного действия классифицирован, как механизм однонаправленного действия, потому что воздушное давление вводится в исполнительный механизм только через один порт и давление воздействует только на одну сторону мембраны.

Такой тип исполнительного механизма мог бы использоваться для управления движением клапана на топливной линии или для регулирования расхода питательной воды в котел, когда очень опасно прекращение потока воды в котел.

Мембранный исполнительный механизм однонаправленного действия

В состав такого механизма входит:

1. Гибкая мембрана, часто сделанная из прорезиненной ткани;
2. Металлический диск, который принимает на себя нагрузку и поддерживает мембрану;
3. Пружина, которая прикладывает предварительное усилие на мембрану и шток, связанный с мембраной и перемещающийся при прогибе мембраны;
4. Орган управления, движение которого будет обеспечивать исполнительный механизм;

Принцип действия:

1. Давление вводится в механизм;
2. Мембрана прогибается вверх, сжимая пружину и поднимая шток;
3. Шток двигается пропорционально величине давления воздуха, приложенного к исполнительному механизму через порт ввода давления.

Связь движения штока с величиной приложенного давление воздуха означает, что управление прилагаемым давлением позволяет исполнительному механизму устанавливать регулирующий орган в любой заданной точке его зоны перемещения.

Мембранный исполнительный механизм двойного действия

Мембранные исполнительные механизмы двойного действия содержат два порта для ввода давления. Такие механизмы часто используются там, где ограничено пространство для размещения клапана. Давление воздуха обеспечивает усилия для движения в обоих направлениях и не имеется никакой потребности в применении громоздкой пружины, используемой в мембранных исполнительных механизмах однонаправленного действия.

Мембранные исполнительные механизмы двойного действия

Принцип действия:

Головка исполнительного механизма разделена на две секции или камеры, мембранной и двумя металлическими дисками. Имеются два порта, по одному для каждой камеры.
1. Давление воздуха, прилагаемое к нижнему порту, перемещает мембрану и шток вверх;
2. Давление воздуха, прилагаемое к верхнему порту, перемещает мембрану и шток вниз.

Так как давление воздуха обеспечивает силу для движения в двух направлениях, это исполнительный механизм двойного действия.

Поршневой исполнительный механизм

В поршневом пневматическом исполнительном механизме давление воздуха действует на поршень в цилиндре для развития тяги и создания движения. Поршневой исполнительный механизм позволяет обеспечивать большее перемещение штока, которое ограничено лишь практической длиной цилиндра.

Поршневой пневматический исполнительный механизм хорошо подходит для работ, где требуется передвижение на большее расстояние. Обычно используется для выбора положения жалюзи и заслонок, которые управляют потоком воздуха или других газов в промышленных процессах.

Поршневой исполнительный механизм

В состав такого механизма входит:

1. Цилиндр;
2. Две торцевые крышки, которые герметично закрывают цилиндр;
3. Два порта, через которые сжатый воздух поступает в цилиндр или выходит из него; 4. Поршень, который перемещается в цилиндре;
5. Шток поршня, который соединяет поршень с органом управления, приводимым в действие исполнительным механизмом.

Принцип действия:

1. Поршень перемещается под действием давления воздуха, подаваемого через один порт;
2. В это время воздух на другой стороне поршня выпускается наружу через другой воздушный канал, соединенный с атмосферой;

Поршневой пневматический исполнительный механизм

Источник: http://www.kipiavp.ru/pribori/pnevmaticheskiy-ispolnitelniy-mehanizm.html

Компрессор трактора МТЗ 82(80) устройство и характеристики

Наряду со всеми системами трактор МТЗ 80 оснащен пневматическим оборудованием, которое расширяет функциональные качества машины. Пневматическая система трактора МТЗ предназначена для привода тормозов шасси прицепного оборудования и транспортных средств, а также для отбора сжатого воздуха при накачивании шин или использования давления при обслуживании трактора.

Пневматическая система трактора

Видео удалено.
Видео (кликните для воспроизведения).

В рабочем состоянии система в автоматическом режиме поддерживает рабочее давление реагируя на установленный верхний предел значения или на падение давления в результате работы привода тормозов и отбора сжатого воздуха.

В состав системы входит:

  • Компрессор — узел, создающий давление воздуха
  • Воздушный балон-ресивер
  • Регулятор давления — узел, регулирующий давление в системе
  • Манометр — контрольно-измерительный прибор системы на панели управления
  • Тормозной кран — узел предназначен для управления подачей давления в рабочие пневмоцилиндры тормозов прицепного средства. Привод управления краном сблокирован с педалями управления тормозов трактора.
  • Разобщительный кран — узел для открытия и закрытия давления в соединительном пневмапроводе.
  • Пневматический переходник — устройство для привода тормозов транспортных прицепных средств с гидравлической тормозной системой.
  • Соединительная головка — муфта для соединения воздушных магистралей трактора и прицепа.

Рабочее давление, созданное компрессором в пневмосистеме трактора Беларус, поддерживается автоматически регулятором в пределах 6,5-8 кгм/см² (6,7-7,3 в ранних версиях трактора). Срабатывания предохранительного клапана осуществляется при росте давления в пределах 8,5-10 кгм/см² (8,5-9 в ранних версиях). При исправной работе системы падение давления в течение получаса после остановки двигателя не должно превышать 2 кгм/см². При повышении значения падения пневмосистема подлежит проверке с последующим устранением неполадок.

Устройство и работа компрессора

Поршневой одноцилиндровый узел установлен с левой стороны походу трактора на корпусе распределительных шестерён дизеля. Привод компрессор получает от шестерни топливного насоса высокого давления при передаче вращения через промежуточную шестерню на ведомую шестерню, зубцы которой выполнены за одно целое с коленвалом узла.

Включение привода осуществляется в непосредственном месте размещения узла рукояткой, вводящей в зацепление промежуточную шестерню с шестернёй ТНВД. Поворот рукоятки в крайнее правое положение соответствует включённому приводу, левое — выключенному. Включение осуществляют при неработающем дизеле или в крайних случаях на минимальных оборотах.

Узел представляет собой одноцилиндровый поршневой механизм, коленчатый вал которого размещён в отдельном чугунном картере. Вал своими краями опирается на шарикоподшипники, установленные в стенках корпуса. К боковой крышке картера вместе опоры оси вращения коленвала подведён маслопровод от системы смазки дизеля. Через данную магистраль смазка поступает по каналу коленвала узла к трущемся поверхностям вкладышей шатунной шейки кривошипа и далее разбрызгиванием ко всем деталям поршневой группы и механизмам привода, после стекает из картера вниз в корпус распределительных шестерён дизеля.

Читайте так же:  Заявление о взыскании алиментов с должника

Цилиндр в виде отливки с теплоотводными рёбрами для охлаждения в сборе с головкой крепится к картеру четырьмя шпильками через прокладку. В головке цилиндра размещён клапанный механизм состоящий из пластинчатых впускного и нагнетательного клапанов. Пружинный принцип конструкции обеспечивает открытие нагнетательного клапана в такте сжатия движения поршня, увеличивая потенциал давления воздуха в системе, и открытие впускного клапана под действием разрежения при движении поршня в нижнее положение.

Технические характеристики

Компрессором с каталожным номером А 29.01.000 укомплектовываются трактора с двигателем Д-240, Д-243, Д-245.

  • Тип — одноцилиндровый
  • Охлаждение — воздушное
  • Диаметр цилиндр -72 мм
  • Рабочий объём — 155 см³
  • Ход поршня — 38 мм
  • Производительность — 115 л/ мин.
  • Частота вращения номинальная — 1350 об/мин.
  • Частота вращения максимальная — 1550 об/мин.
  • Вес узла — 9,5 кг

Обслуживание и ремонт компрессора

С периодичностью в 1000 моточасов работы проверяют надёжность соединений деталей компрессора, герметичность работы клапанов и соединений пневмоаппаратуры в системе. Для обеспечения исправной работы клапанного механизма снимают головку цилиндра и очищают от нагара поверхность поршня, головки, клапанов и воздушных каналов. При использовании компрессора по истечении 2000 моточасов работы трактора, через одно ТО 3, производят демонтаж узла для полной ревизии механизма и ремонта в мастерской.

Нарушения в работе узла характеризуются снижением производительности с сопровождением выбрасывания масла в ресивер. При этом увеличивается время для создания рабочего значения давление в системе. Основными причинами является общий износ цилиндропоршневой группы и нарушение плотности закрытия клапанов в головке цилиндра узла. Стук и шумы в работе механизма свидетельствует о увеличенных зазорах в сочленениях деталей. В этой ситуации рекомендуется незамедлительно отключить привод компрессора и произвести срочный ремонт во избежание аварийной поломки. Также причинами полного отказа в работе, может быть, поломка привода или механизма его включения.

Осуществляя регламентный ремонт, а также при проведении дифектовки деталей компрессора учитывают следующие сборочные параметры:

  • Размер диаметра цилиндра 72,02 мм
  • Диаметр юбки поршня 71,87 мм
  • Зазор замка компрессионного кольца при установленном поршне в цилиндре не должен превышать 1,21 мм
  • Торцевой зазор в канавке между поршнем и кольцом не больше 0,41 мм
  • При установке головки цилиндра, гайки на шпильках крепления затягивают в два этапа динамометрическим ключом с усилием от 12 до 17 Нм.

Кроме выше перечисленных параметров обращают внимание на износ опорных подшипников коленчатого вала, на выработку посадочных мест оси и втулки промежуточной шестерни, износ деталей механизма включения, а также состояние зубьев шестерён привода.

Для успешного проведения ремонта узла в продаже существуют ремонтные комплекты деталей в максимальный состав которых входит:

  • набор прокладок
  • комплект клапанов с сёдлами и пружинами к ним
  • вкладыши подшипника скольжения нижней головки шатуна
  • втулка верхней головки шатуна
  • поршень и комплект колец
  • опорные подшипники колен вала
  • шатун и соединительный поршневой палец
  • комплект уплотнительных резиновых колец для осей привода и включения

Сугубо исправная работа компрессора и его высокая производительность не даёт гарантий эффективной работы пневматической системы. Любая неплотность в соединениях воздушных трубопроводов, стравливание давления в результате нарушения регулировки оборудования, засорения, нарушения уплотнений в конструкции узлов снижает давление и эффективность работы системы.

Для предупреждения засорения через каждые 500 часов работы промывают фильтр в регуляторе давления системы. Одновременно с обслуживанием узла, при проведении ТО 2, проверяют давление срабатывания регулятора и предохранительного клапана. Ежесменный слив конденсата из ресивера исключит скопление и замерзание жидкости в узлах и трубопроводах провоцирующих отказы в работе системы.

Источник: http://vseomtz.ru/ustroystvo-i-obslujevanie/kompressor-mtz

Устройство и принцип работы пневмосистемы европейских грузовиков

Система подготовки воздуха для пневмосистемы

Рабочая тормозная пневмосистема

При открытии тормозного крана 15 через магнитный клапан АВ 5 39 воздух поступает в тормозную камеру 14 (передняя ось грузовика) и на автоматический регулятор тормозных усилий 18. Регулятор включается и направляет воздух в рабочую камеру пневмоцилиндров 19 через магнитный клапан 40. Давление в тормозных камерах, соответственно и усилие, необходимое для торможения, зависит от степени нажатия на педаль тормозного крана, а также от его загрузки автомобиля. При этом величина давления, регулируемая нагрузкой на грузовик, регулируется автоматическим регулятором тормозных усилий 18, который соединен с задней осью шарнирным соединением.

При загрузке и разгрузке автомобиля изменяется расстояние между рамой и осью грузовика. Таким же образом осуществляется управление давлением в системе тормозного привода.

Кроме автоматического регулятора тормозных усилий через магистраль управления приводится в действие клапан нулевой-полной нагрузки в тормозном кране грузовика. Так же и давление тормозной системе привода колес передней оси корректируется в зависимости от загрузки грузовика.

Управление краном управления тормозами прицепа 17 осуществляется обоими рабочими контурами системы тормозов. При этом, сам кран осуществляет подачу воздуха через соединительную головку 12 и шланг на тормозной кран прицепа 27. При этом, начинается поступление сжатого воздуха от ресивера 28 через тормозной кран прицепа, кран растормаживания прицепа 32, пневмоклапан соотношения давлений 33 к автоматическому регулятору тормозных сил 34, а также к ускорительному клапану АВ 5 37. Регулятор же тормозных сил 34 управляет Ускорительным клапаном.

Сжатый воздух поступает в тормозные пневматические камеры 29 передней оси автомобиля, а через регулятор тормозных сил 35 и при срабатывании ускорительных клапанов АВ 5 38 – к тормозным камерам 31. Давление в тормозной системе прицепа согласуется с давлением тормозной системы грузового автомобиля при помощи автоматических пневморегуляторов 34 и 35 тормозных сил и устанавливается таким, какое требуется для данной степени загрузки прицепа. Пневмоклапан 33 уменьшает величину давления на тормозных колодках для избегания блокировки колес передней оси в режиме притормаживания.

Читайте так же:  Фмба россии приказ об отмене дополнительного отпуска

Ускорительные клапаны АВ 5 в прицепе и магнитные клапаны АВ 5 в грузовом автомобиле управляют (создание, поддержание и сброс) величиной давления в тормозных камерах и включаются с помощью электронных блоков АВ 5 (36 или 41). Это управление осуществляется независимо от давления, создаваемого тормозными кранами грузового автомобиля или прицепа.

В нерабочем состоянии (магниты обесточены) краны выполняют функцию ускорительных клапанов и служат только для быстрой подачи и сброса давления в тормозных камерах.

Стояночная тормозная пневмосистема

При изменении положения рычага тормозного крана с ручным управлением 16 полностью сбрасывается рабочее давление сжатого воздуха в пружинном энергоаккумуляторе пневмоцилиндра 19. В таком состоянии усилие на колесные тормозные механизмы, прилагается за счет сил упругости пружин пневмоцилиндров. Одновременно сбрасывается давление воздуха в магистрали на участке от тормозного крана 16 с ручным управлением до крана управления тормозом прицепа 17. При стоянке автопоезда удержание прицепа осуществляется путем подачи давления в управляющую магистраль. Так как, Директивы Совета Европейского Экономического Сообщества (ККЕС) включают требование, чтобы грузовой автопоезд (грузовой автомобиль и прицеп) мог удерживаться на месте только за счет тормозной системы автомобиля, то в тормозной системе прицепа можно сбросить давление переводом рычага тормозного крана с ручным управлением в «Положение контроля». Это позволяет проверить, отвечает ли стояночная тормозная система автопоезда требованиям ККЕО.

Вспомогательная тормозная система

При отказе рабочих тормозных контуров 1 и 2 автопоезда можно затормозить с помощью пружинных энергоаккумуляторов пневмоцилиндров 19. Усилие на торможение, необходимое для тормозных механизмов колес, создается, как уже указывалось в разделе «Стояночная тормозная система», за счет силы упругости предварительно сжатых пружин энергоаккумуляторов пневмоцилиндров 19. При этом, давление в пневмоцилиндрах сбрасывается не полностью, а только до уровня, необходимого для создания требуемого усилия торможения.

Торможение прицепа в автоматическом режиме (экстренное торможение)

В случае разрыва давление в магистрали мгновенно падает до атмосферного. В результате этого срабатывает тормозной кран 27 и начинается процесс экстренного торможения. При срабатывании рабочей тормозной системы встроенный в клапан управления тормозом прицепа 17, двухходовой двухпозиционный клапан перекрывает проходное сечение в направлении соединительной головки 11 магистрали снабжения сжатым воздухом. Таким образом, разрыв магистрали управления тормозной системы вызовет быстрое падение рабочего давления и в течение законодательно регламентированного времени (не более двух секунд) сработает тормозной кран прицепа 27. Начнется автоматическое торможение. При этом, обратный клапан 13 предотвращает случайное срабатывание стояночной тормозной системы при падении давления в магистрали подачи сжатого воздуха к тормозной системе прицепа.

Компоненты блока АВ 5

Как правило, в оборудование европейского грузовика входит: три контрольными лампы текущего контроля системы, реле, инфомодуль и розетка АВ5 (24В). После включения зажигания загорается контрольная лампа желтого цвета, если автомобиль с прицепом без системы АВ 5 или питающий кабель разорван. Контрольная лампа красного цвета гаснет, если автомобиль набрал скорость более семи кмч и блок АВ5 не обнаружил неисправности в системе.

Источник: http://www.sto-razborka.ru/uslugi-sto/remont-pnevmaticheskih-sistem/ustrojstvo-i-printsip-raboty-pnevmosistemy-evropejskih-gruzovikov/

Пневматическая тормозная система автомобиля

31.01.2018 Автор: Master Service

15310

Пневматический тормозной привод — вид конструкции тормозной системы, которая использует в качестве энергоносителя сжатый воздух. Пневматические тормоза используют в разных видах транспорта:

  • пассажирские автобусы;
  • грузовые коммерческие автомобили;
  • специализированная техника — грейдеры, бульдозеры, погрузчики, автокраны, другие крупно- и малогабаритные спецсредства;
  • железнодорожный транспорт.

Тягач DAF XF105 — пример грузовика с пневматическими тормозами

Нас интересует именно автомобильный вариант пневматического тормозного привода. В статье мы расскажем о:

  • видах пневматических тормозных систем;
  • конструкции и принципе работы пневмопривода;
  • основных преимуществах и недостатках пневматики в сравнении с гидравлическими тормозами;
  • неисправностях, которые возникают в работе пневмотормозов, признаках и последствиях поломок, а также дадим полезные советы как продлить срок службы тормозной системы.

Классификация пневматических тормозных систем

Пневматический тормозной привод используют отдельно или в комплексе с другими системами (примеры — комбинированные тормозные системы электропневматического или пневмогидравлического типа).

Пневматические тормозные системы также классифицируют по количеству рабочих контуров-магистралей. Встречаются 3 вида систем:

  • одноконтурные;
  • двухконтурные;
  • многоконтурные.

Одноконтурные системы. Особенность — магистрали на передние и задние колеса объединены в одну ветку, а интенсивность потока сжатого воздуха контролирует один тормозной кран. Одноконтурная модель пневматической тормозной системы — устаревший тип конструкции, который в большинстве случаев встречается только на старых моделях грузовых автомобилей и автобусов.

Двухконтурные системы. Отличия понятны из названия — магистрали тормозной системы автомобиля разделены на две ветки. Одна ветка передает сжатый воздух на передние колеса, вторая — на задние. Поток энергоносителя контролируют два тормозных крана — по одному на каждый контур магистралей. Двухконтурная конструкция надежнее, чем одноконтурная. Если вышла из строя ветка задней оси, передние тормозные узлы продолжают функционировать и наоборот.

Многоконтурные системы. Особенность — сложная, но эффективная и надежная конструкция. Многоконтурные пневматические системы встречаются в крупных грузовых автомобилях и состоят из трех и больше контуров. Многоконтурная тормозная пневмосистема увеличивает устойчивость, облегчает управление и остановку грузовика.

Конструкция пневматической тормозной системы

Конструкция пневматического тормозного привода примерно одинаковая для всех видов автомобилей. Отличаться могут отдельные узлы и элементы.

Общий вид пневматической тормозной системы: 1 — двухсекционный тормозной кран, 2, 6 — тормозные камеры (силовые цилиндры), 3 — предохранительный клапан, 4 — регулятор давления, 5 — компрессор, 7 — кран отбора воздуха, 8 и 9 — разобщительный кран с соединительной головкой, 10 — ресиверы (воздушные баллоны), 11, 12 — тормозные барабаны в сборе.

Компрессор. Нагнетает воздух в ресиверах (баллонах). Компрессор устанавливают в переднюю часть автомобиля возле блока двигателя. Агрегат работает от клиновидного ремня, который соединяет шкив компрессора и шкив радиаторного вентилятора.

Ресиверы или баллоны. В ресиверах хранится запас сжатого воздуха. Пневматические тормоза оборудованы двумя ресиверами. Первый баллон, который в народе называют “мокрым”, оборудован предохранительным клапаном и краном для слива конденсата. На втором ресивере есть только кран для слива конденсата. Предохранительный клапан, который контролирует давление во втором баллоне, установлен дальше по магистрали в тормозном кране.

Предохранительный клапан. Защищает систему от перегрузки и сбрасывает избыточное давление. Количество защитных клапанов зависит от типа конструкции и количество контуров магистралей.

Регулятор давления. Контролирует и поддерживает оптимальное давление в системе, а при необходимости впускает или выпускает воздух в устройство разгрузки компрессора.

Тормозной кран. Комбинированный поршневой узел, который распределяет потоки сжатого воздуха по системе, последовательно заполняет энергоносителем все контуры пневмосистемы и тормозные камеры. Тормозной кран — связующий узел между ресиверами и тормозными цилиндрами колес. Количество тормозных кранов в пневматической системе зависит от количество контуров.

Читайте так же:  Военный билет отсрочка от армии

Осушитель воздуха. Выделяет пары воды и другие примеси (например, пары масла) из всасываемого воздуха. В современных моделях автомобилей осушитель совмещен с регулятором давления, поэтому последний как отдельный узел отсутствует.

Тормозные узлы с силовыми цилиндрами (тормозными камерами). Установлены на колесах автомобиля, отвечают за остановку транспортного средства. Каждый узел оборудован тормозным цилиндром, в который по трубопроводу под давлением поступает воздух и который прижимает тормозные колодки к барабану.

Разобщительный кран. Элемент встречается только в тягачах с прицепами. Через кран пневматическую тормозную систему тягача соединяют с тормозной магистралью прицепа. Кран объединяет две системы, увеличивает устойчивость и управляемость автомобиля, уменьшает риск заноса прицепа при торможении.

Пневмоусилители. Агрегаты увеличивают показатели давления до необходимого уровня и уменьшают нагрузку на компрессор. Количество усилителей отличается в различных моделях автомобилей.

Трубопровод. Система труб и шлангов соединяет все узлы и элементы. Количество ответвлений трубопровода зависит от количества контуров пневматической тормозной системы.

Педаль тормоза. Элемент передает усилие на поршни тормозного крана и открывает каналы для сжатого воздуха от ресиверов на тормозные камеры колес.

Рычаг ручного тормоза.

Измерительные приборы и датчики. Контролирующие элементы, по которым водитель следит за состоянием и работоспособностью тормозной системы. К ним относятся датчики, которые находятся в ресиверах и тормозных камерах, и двухстрелочный манометр. Одна стрелка манометра показывает давление в баллонах, а вторая — в тормозных камерах. В старых моделях автомобилей манометров было два и каждый отвечал за свой узел.

Принцип работы и функционал пневматического тормозного привода

Главная и единственная функция любой тормозной системы — вовремя остановить автомобиль не зависимо от условий и внешних факторов. Неважно, нужно плавно остановить авто перед перекрестком или резко затормозить из-за неожиданно возникшей преграды — автомобиль должен остановится без ущерба для водителя, транспортного средства, других участников дорожного движения.

Рассмотрим основные этапы и процессы, которые происходят в пневматической тормозной системе.

Пневмокомпрессор для автомобилей МАЗ с двигателем OM 906 LA

Компрессор тормозной системы — приводной агрегат, который работает только когда запущен двигатель. Через воздушный фильтр в компрессор поступает воздух, который агрегат через регулятор давления закачивает в ресиверы.

Регулятор давления, который расположен либо как отдельный узел, либо встроен в осушитель, контролирует и оптимизирует давление воздуха, а когда ресиверы заполнены полностью, обеспечивает холостой ход компрессора. Если регулятор давления не работает, его подменяет предохранительный клапан.

Ресиверы системы соединены последовательно. В нижней части первого баллона находится спускной кран, через который из энергоносителя выводится конденсат и пары масла. Второй баллон соединен с краном, который оборудован регулятором давления и предохранительным клапаном. Последние сбрасывают лишний воздух и нормализуют давление в системе, если оно превышает допустимое.

Тормозной кран контролирует и перенаправляет поток сжатого воздуха в камеры силовых цилиндров, которые находятся в тормозных узлах колес. В одноконтурной системе за передние колеса автомобиля отвечает нижний цилиндр крана, а за задние колеса тягача и колеса прицепа (если есть) — верхний цилиндр. Пневматические тормоза прицепа присоединяют к автомобилю через разобщительный кран и соединительную головку.

Когда водитель нажимает педаль тормоза, тормозной кран открывает доступ для сжатого воздуха, который из ресиверов поступает в тормозные камеры колес. В цилиндрах увеличивается давление, разжимные кулаки прижимают колодки к тормозным барабанам колес и останавливают автомобиль. Когда водитель отпускает педаль, клапаны тормозных камер колес выводя воздух и колодки возвращаются в исходное положение.

Пневматический барабанный тормозной узел в сборе на автомобиле

Водитель может следить за состоянием пневматической тормозной системы по манометру, который показывают давление сжатого воздуха в ресиверах и тормозных камерах. Манометр соединен с датчиками давления, которые передают данные на приборную панель в кабину водителя.

Преимущества и недостатки пневматики

Пневматическая и гидравлические тормозные системы — это два аналоговых тормозных привода, каждый из которых обладает своими преимуществами и недостатками. Первый тип привода используют в основном в тяжелых автомобилях, а второй чаще встречается на транспортных средствах повседневного использования.

Чем пневматические тормоза лучше гидравлических:

  • когда водитель отпускает педаль тормоза, сжатый воздух не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу;
  • пневматическая система экономичнее, так как использует сжатый воздух, который компрессор забирает из атмосферы;
  • воздух меньше изнашивает систему, чем жидкостный наполнитель;
  • сжатый воздух — нейтральная среда, поэтому вероятность того, что энергоноситель потеряет свойства, гораздо меньше. Гидравлические смеси для тормозных систем сильно отличаются друг от друга по составу, смешивать их нельзя, а вывести из строя систему может любая посторонняя примесь;
  • пневматическая тормозная система легче переносит температурные перепады как окружающей среды, так и внутри системы. Гидравлический энергоноситель может закипеть или замерзнуть от резкого скачка температуры, в результате тормоза ломаются;
  • пневматика меньше боится мелких утечек, так как компрессор работает все время и в случае утечки рабочего газа быстро восполнит недостачу.

Однако и у гидравлики есть свои преимущества:

  • гидротормоз срабатывает быстрее за счет того, что энергоноситель обладает высокой плотностью и не сжимается, как воздух;
  • у гидравлического привода конструкция значительно проще, чем у пневматической тормозной системы
  • гидравлический привод функционирует как отдельная система в отличие от пневматического, в котором работа компрессора зависит от работы двигателя;
  • несмотря на то, что пневматические тормоза срабатывают быстрее, КПД гидравлических тормозов выше за счет меньшей потери энергии при перемещении энергоносителя по трубопроводу.

Ну и самое главное отличие между гидравликой и пневматикой — цена на запчасти и агрегаты. Хотя тяжело сравнивать, например, стоимость тормозного суппорта легкового автомобиля и барабанный тормоз тяжелого тягача, как минимум из-за большой разницы в габаритах и конструкции.

Именно благодаря отличиям между двумя видами тормозных приводов каждый из типов занимает свою нишу и практически не конкурирует с аналогом.

Неисправности пневматической тормозной системы. Причины и признаки поломок. Как продлить срок службы тормозов

Основные неисправности пневматической тормозной системе:

Своевременный ремонт — залог безопасности и комфорта

Чтобы не допустить неисправности, достаточно регулярно проверять состояние тормозной системы автомобиля, следить за показатели манометров и датчиков, вовремя проходить ТО, использовать качественные и подходящие по допускам запчасти, комплектующие и сменные узлы. Именно от отношения водителя к автомобилю зависит срок службы транспортного средства. Это правило, которые должен знать и соблюдать каждый водитель независимо от того, на чем ездит человек — на легковушке или тягаче с прицепом.

Видео удалено.
Видео (кликните для воспроизведения).

Источник: http://steering.com.ua/blog/pnevmaticheskaya-tormoznaya-sistema-105

Устройство и работа пневматической системы
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here