Ученый который ввел понятие степени электролитической диссоциации

Сегодня мы ответим на вопросы по теме: "Ученый который ввел понятие степени электролитической диссоциации" с профессиональной точки зрения с комментариями и выводами. Просьба все вопросы задавать дежурному специалисту.

Основные положения теории электролитической диссоциации. Теория сильных электролитов

Шведский ученый Сванте Аррениус изучая электропроводность растворов различных веществ, пришел к выводу, что причиной электропроводности является наличие в растворе ионов, которые образуются при растворении электролита в воде. Этот процесс получил название электролитическая диссоциация. В 1887 году Аррениус сформулировал основные положения теории электролитической диссоциации.

Рассмотрим основные положения теории электролитической диссоциации.

При растворении в воде электролиты диссоциируют (распадаются) на положительные и отрицательные ионы.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома – это простые ионы (Na + , Mg 2+ , Аl 3+ и т.д.) – или из нескольких атомов – это сложные ионы (NО3 — , SO 2- 4, РО З- 4и т.д.).

Причиной диссоциации электролита в водном растворе является его гидратация, т.е. взаимодействие электролита с молекулами воды и разрыв химической связи в нем.

В результате взаимодействия электролита с молекулами воды образуются гидратированные, т.е. связанные с молекулами воды, ионы.

Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока – катоду, поэтому их называют катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока – аноду, поэтому их называют анионами.

Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

4. Электролитическая диссоциация – процесс обратимый для слабых электролитов.Наряду с процессом диссоциации (распад электролита на ионы) протекает и обратный процесс – ассоциация (соединение ионов). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

Механизм электролитической диссоциации.

Электролитическая ионизация обусловлена взаимодействием полярных молекул растворителя с частицами растворенного вещества. Упрощенно, без учета H-связей в воде, этапы электролитической диссоциации представлены на рис. 3.1.

Этапы электролитической ионизации полярных молекул (а)

и ионных кристаллов (б)

1 — сольватация; 2 — ионизация; 3 — диссоциация.

Подготовительным этапом электролитической диссоциации является сольватация вещества (этап 1). Далее полярные молекулы (например, HCl) поляризуются в силовом поле окружающих их диполей растворителя, и вследствие сильного смещения связывающих электронов связь становится ионной. Происходит ионизация молекулы (этап 2), а затем гетеролитическая диссоциация связи с образованием гидратированных ионов:

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

Сольватация вещества наблюдается и при растворении преимущественно ионных кристаллов (например, NaCl) в воде. Взаимодействие с полярными молекулами растворителя способствует ослаблению связей в кристалле и обеспечивает возможность перехода ионов Na и Cl в раствор с образованием гидратированных ионов:

Количество молекул в сольватной оболочке меняется в зависимости от природы иона, температуры и концентрации раствора. Поэтому формулой невозможно точно передать состав сольвата, т.к. он может быть, например, Na + (H2O)6, Na + (H2O)23 и др.

Основные понятия электролитической диссоциации.

По способности вещества распадаться или не распадаться в расплаве или растворе на ионы различают, соответственно, электролиты и неэлектролиты.

Электролиты — это вещества, растворы и расплавы которых проводят электрический ток

. К электролитам принадлежат большинство солей и гидроксиды.

Неэлектролиты — это сложные вещества, которые не распадаются на ионы и вследствие чего их растворы и расплавы не проводят электрический ток

. К неэлектролитам относят большую часть органических соединений, например, бензол, глюкозу, крахмал (важнейшие исключения: органические кислоты и оранические основания).

К сильным электролитам условно относят вещества, кажущаяся степень диссоциации которых в растворе превышает 30% (ά > 0,3). При ά 0 С , однако, в этом растворе не содержится 22% недиссоциированных молекул HCl, практически все молекулы диссоциированы.

Электролиты, которые в разбавленном водном растворе диссоциируют практически полностью, называют сильными электролитами

.

К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты (H2SO4, HNO3, HClO4, галогеноводородные, кроме HF и др.), гидроксиды s-элементов (исключение — Be(OH)2 и Mg(OH)2). Кажущиеся значения a этих электролитов находятся в пределах от 70 до 100%.

Диссоциация сильных электролитов — это практически необратимый процесс

:

HCl → H + + Cl — или HCl = H + + Cl —

Электролиты, которые в разбавленном водном растворе диссоциируют частично, называют слабыми. Диссоциация слабых электролитов — обратимый процесс

, например:

ά (при 25 0 С)
HCN → H + + CN — 7·10 -5 (или 0,007%)
0,013 (или 1,3%)

Степень электролитической диссоциации зависит от:

  • природы электролита и растворителя;
  • концентрации раствора;
  • температуры

и возрастает при увеличении разбавления раствора. Степень диссоциации возрастает при увеличении температуры раствора. Если в растворе слабой кислоты или слабого основания увеличить концентрацию одноименного иона введением соответствующей соли, то наблюдается резкое изменение степени диссоциации слабого электролита. Рассмотрим, например, как изменится ά уксусной кислоты (CH3COOH) при введении в раствор ацетата натрия (введение одноименных ионов CH3COO — ).

Согласно принципу Ле Шателье равновесие процесса диссоциации

сместится влево в результате увеличения концентрации ацетат-ионов CH3COO — , образующихся при диссоциации ацетата натрия:

Такое смещение равновесия в сторону молизации CH3COOH означает уменьшение степени ее диссоциации и приводит к уменьшению концентрации ионов водорода.

Источник: http://megaobuchalka.ru/8/37952.html

Теория электролитической диссоциации (Аррениус, Менделеев, Каблуков). Электролиты и неэлектролиты. Понятие о степени и константе диссоциации

Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Читайте так же:  Муж написал отказ от алиментов

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс .

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Теория Электролитической диссоциации:

1. При растворении в воде электролиты распадаются на положительные ионы (катионы) и отрицательные ионы (анионы). ионы в растворе взаимодействуют с молекулами воды (гидратация). Процесс диссоциации является обратимым.

2. Под действием постоянного электрического тока катионы движутся по катоду, анионы – к аноду.

3. Степень диссоциации зависит от природы электролита и растворителя, концентрации электролита и температуры.

Степень диссоциации (а) – отношение числа молекул, распавшихся на ионы (N’) к общему числу растворенных молекул (N): а = N’/ N;

Сильный электролит – вещество, степень диссоциации которого больше 30%.. к сильным электролитам относят все соли , сильные кислоты, сильные основания.

Слабый электролит – вещество, степень диссоциации которого меньше 3%. к слабым электролитам относят слабые кислоты, слабые основания.

Степень диссоциации зависит от концентрации вещества в растворе, поэтому некоторые слабые электролиты при разбавлении могут стать сильными.

Константа диссоциации – константа равновесия электролитической диссоциации. она равна отношению произведений концентраций ионов, образующихся при диссоциации, к концентрации исходных частиц.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: http://studopedia.ru/4_177063_teoriya-elektroliticheskoy-dissotsiatsii-arrenius-mendeleev-kablukov-elektroliti-i-neelektroliti-ponyatie-o-stepeni-i-konstante-dissotsiatsii.html

CHEMEGE.RU

Подготовка к ЕГЭ по химии и олимпиадам

Теория электролитической диссоциации

Темы кодификатора ЕГЭ: Электролитическая диссоциация электролитов вводных растворах. Сильные и слабые электролиты.

Электролиты – это вещества, растворы и расплавы которых проводят электрический ток.

Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. Таким образом, в растворах или расплавах электролитов есть заряженные частицы. В растворах электролитов, как правило, электрическая проводимость обусловлена наличием ионов.

Ионы – это заряженные частицы (атомы или группы атомов). Разделяют положительно заряженные ионы (катионы) и отрицательно заряженные ионы (анионы).

Электролитическая диссоциация — это процесс распада электролита на ионы при его растворении или плавлении.

Разделяют вещества — электролиты и неэлектролиты. К неэлектролитам относятся вещества с прочной ковалентной неполярной связью (простые вещества), все оксиды (которые химически не взаимодействуют с водой), большинство органических веществ (кроме полярных соединений — карбоновых кислот, их солей, фенолов) — альдегиды, кетоны, углеводороды, углеводы.

К электролитам относят некоторые вещества с ковалентной полярной связью и вещества с ионной кристаллической решеткой.

В чем же суть процесса электролитической диссоциации?

Поместим в пробирку несколько кристаллов хлорида натрия и добавим воду. Через некоторое время кристаллы растворятся. Что произошло?
Хлорид натрия – вещество с ионной кристаллической решеткой. Кристалл NaCl состоит из ионов Na + и Cl — . В воде этот кристалл распадается на структурные единицы-ионы. При этом распадаются ионные химические связи и некоторые водородные связи между молекулами воды. Попавшие в воду ионы Na + и Cl — вступают во взаимодействие с молекулами воды. В случае хлорид-ионов можно говорить про электростатическое притяжение дипольных (полярных) молекул воды к аниону хлора, а в случае катионов натрия оно приближается по своей природе к донорно-акцепторному (когда электронная пара атома кислорода помещается на вакантные орбитали иона натрия). Окруженные молекулами воды ионы покрываются гидратной оболочкой.

Диссоциация хлорида натрия описывается уравнением:

NaCl = Na + + Cl –

При растворении в воде соединений с ковалентной полярной связью, молекулы воды, окружив полярную молекулу, сначала растягивают связь в ней, увеличивая её полярность, затем разрывают её на ионы, которые гидратируются и равномерно распределяются в растворе. Например, соляная ксилота диссоциирует на ионы так: HCl = H + + Cl — .

При расплавлении, когда происходит нагревание кристалла, ионы начинают совершать интенсивные колебания в узлах кристаллической решётки, в результате чего она разрушается, образуется расплав, который состоит из ионов.

Процесс электролитической диссоциации характеризуется величиной степени диссоциации молекул вещества:

Степень диссоциации — это отношение числа продиссоциировавших (распавшихся) молекул к общему числу молекул электролита. Т.е., какая доля молекул исходного вещества распадается в растворе или расплаве на ионы.

Nпродисс — это число продиссоциировавших молекул,

Nисх — это исходное число молекул.

По степени диссоциации электролиты делят на делят на сильные и слабые.

Сильные электролиты (α≈1):

1. Все растворимые соли (в том числе соли органических кислот — ацетат калия CH3COOK, формиат натрия HCOONa и др.)

2. Сильные кислоты: HCl, HI, HBr, HNO3, H2SO4 (по первой ступени), HClO4 и др.;

3. Щелочи: NaOH, KOH, LiOH, RbOH, CsOH; Ca(OH)2, Sr(OH)2, Ba(OH)2.

Сильные электролиты распадаются на ионы практически полностью в водных растворах, но только в ненасыщенных. В насыщенных растворах даже сильные электролиты могут распадаться только частично. Т.е. степень диссоциации сильных электролитов α приблизительно равна 1 только для ненасыщенных растворов веществ. В насыщенных или концентрированны растворах степень диссоциации сильных электролитов может быть меньше или равна 1: α≤1.

Читайте так же:  Алименты через нотариуса

Слабые электролиты (α

1. Слабые кислоты, в т.ч. органические;

2. Нерастворимые основания и гидроксид аммония NH4OH;

3. Нерастворимые и некоторые малорастворимые соли (в зависимости от растворимости).

Неэлектролиты:

1. Оксиды, не взаимодействующие с водой (взаимодействующие с водой оксиды при растворении в воде вступают в химическую реакцию с образованием гидроксидов);

2. Простые вещества;

3. Большинство органических веществ со слабополярными или неполярными связями (альдегиды, кетоны, углеводороды и т.д.).

Как диссоциируют вещества? По степени диссоциации различают сильные и слабые электролиты.

Сильные электролиты диссоциируют полностью (в насыщенных растворах), в одну ступень, все молекулы распадаются на ионы, практически необратимо. Обратите внимание — при диссоциации в растворе образуются только устойчивые ионы. Самые распространенные ионы можно найти в таблице растворимости — это ваша официальная шпаргалка на любом экзамене. Степень диссоциации сильных электролитов примерно равна 1. Например, при диссоциации фосфата натрия образуются ионы Na + и PO4 3– :

Видео удалено.
Видео (кликните для воспроизведения).

Диссоциация слабых электролитов : многоосновных кислот и многокислотных оснований происходит ступенчато и обратимо. Т.е. при диссоциации слабых электролитов распадается на ионы только очень небольшая часть исходных частиц. Например, угольная кислота:

HCO3 – ↔ H + + CO3 2–

Гидроксид магния диссоциирует также в 2 ступени:

Mg(OH)2 ⇄ Mg(OH) + OH –

Mg(OH) + ⇄ Mg 2+ + OH –

Кислые соли диссоциируют также ступенчато, сначала разрываются ионные связи, затем — ковалентные полярные. Например, гидрокабонат калия и гидроксохлорид магния:

KHCO3 ⇄ K + + HCO3 – (α=1)

HCO3 – ⇄ H + + CO3 2– (α + + Cl – (α=1)

MgOH + ⇄ Mg 2+ + OH – (α 1. При растворении в воде электролиты диссоциируют (распадаются) на ионы.

2. Причина диссоциации электролиты в воде – это его гидратация, т.е. взаимодействие с молекулами воды и разрыв химической связи в нем.

3. Под действием внешнего электрического поля положительно заряженные ионы двигаюися к положительно заряженному электроду — катоду, их называют катионами. Отрицательно заряженные электроны двигаются к отрицательному электроду – аноду. Их называют анионами.

4. Электролитическая диссоциация происходит обратимо для слабых электролитов, и практически необратимо для сильных электролитов.

5. Электролиты могут в разной степени диссоциировать на ионы — в зависимости от внешних условий, концентрации и природы электролита.

6. Химические свойства ионов отличаются от свойств простых веществ. Химические свойства растворов электролитов определяются свойствами тех ионов, которые из него образуются при диссоциации.

Примеры .

1. При неполной диссоциации 1 моль соли общее количество положительных и отрицательных ионов в растворе составило 3,4 моль. Формула соли – а) K2S б) Ba(ClO3)2 в) NH4NO3 г) Fe(NO3)3

Решение: для начала определим силу электролитов. Это легко можно сделать по таблице растворимости. Все соли, приведенные в ответах — растворимые, т.е. сильные электролиты. Далее, запишем уравнения электролитической диссоциации и по уравнению определим максимально число ионов в каждом растворе:

а) K2S ⇄ 2K + + S 2– , при полном распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не получится никак;

б) Ba(ClO3)2 ⇄ Ba 2+ + 2ClO3 , опять при распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не образуется никак;

в) NH4NO3 ⇄ NH4 + + NO3 , при распаде 1 моль нитрата аммония образуется 2 моль ионов максимально, больше 2 моль ионов не образуется никак;

г) Fe(NO3)3 ⇄ Fe 3+ + 3NO3 , при полном распаде 1 моль нитрата железа (III) образуется 4 моль ионов. Следовательно, при неполном распаде 1 моль нитрата железа возможно образование меньшего числа ионов (неполный распад возможен в насыщенном растворе соли). Следовательно, вариант 4 нам подходит.

Источник: http://chemege.ru/ted/

Растворы электролитов. Изотонический коэффициент. Теория электролитической диссоциации. Степень электролитической диссоциации. Понятие об активности

Электролитическая диссоциация, полный или частичный распад молекул растворенного вещества на катионы и анионы. Электролитической диссоциацией называют также распад на катионы и анионы ионных кристаллов при растворении или расплавлении. Электролитическая диссоциация, как правило, происходит в полярных растворителях.

При электролитической диссоциации разрываются обычно лишь наиболее полярные связи молекул, например карбоновые кислоты RCOOH диссоциируют на и Н+, электролитической диссоциации могут подвергаться молекулы некоторых растворителей, например воды.

Основными причинами электролитической диссоциации являются, с одной стороны, взаимодействие растворенного вещества с растворителем, которое приводит к сольватации ионов, а с другой стороны — значительное ослабление электростатических взаимодействий между сольватированными ионами в среде, обусловленное ее электростатическим полем (диэлектрической проницаемостью растворителя). При этом работа, необходимая для разрушения молекул (кристаллической решетки), обеспечивается за счет энергии сольватации. Электролитическая диссоциация лежит в основе деления растворов на два класса — растворы неэлектролитов и растворы электролитов. Наблюдаемое различие в коллигативных свойствах разбавленных растворов электролитов и неэлектролитов объясняется тем, что из-за электролитической диссоциации увеличивается общее число частиц в растворе. Это, в частности, приводит к увеличению осмотического давления раствора сравнительнос растворами неэлектролитов, понижению давления пара растворителя над раствором, увеличениюизменения температуры кипения и замерзания раствора относительно чистого растворителя. Электролитической диссоциацией объясняется также ионная электропроводность электролитов.

Мерой электролитической диссоциации является степень диссоциации альфа- отношение кол-ва диссоциированных на ионы молекул электролита к их исходному количеству в растворе. Согласно этому определению альфа- изменяется от 0 (отсутствие диссоциации) до 1 (полная диссоциация) и зависит от природы растворенного вещества и растворителя, а также от концентрации раствора и температуры. Как правило, с увеличением диэлектрической проницаемости растворителя его увеличивается, хотя заметная диссоциация наблюдается в некоторых растворителях с низкой . Способность данного вещества MX к электролитическая диссоциация в определенном р-рителе по схеме MX M+ + Х- характеризуется константой электролитической диссоциации KD, связанной, согласно закону действующих масс, со степенью диссоциации альфа соотношением:

Читайте так же:  Кто может привлечь судью к дисциплинарной ответственности

где х: — молярная концентрация электролита — средний ионный коэффициент активности; коэффициент активности недиссоциированной части электролита. Как и значение константы KD зависит от свойств растворенного вещества, в частности от прочности связи между фрагментами молекул электролита, образующими катион и анион, от диэлектрических свойств растворителя, его способности сольватировать ионы, а также от температуры и давления; в отличие от альфа не зависит от концентрации раствора. Константа KD может быть определена экспериментально, например, по зависимости электропроводности раствора от концентрации электролита или путем прямого измерения содержания свободных ионов в растворе, например, спектрофотометрическим методом.

Соответственно понятиям полной и неполной электролитической диссоциации электролиты классифицируют на сильные и слабые (см. Электролиты), полностью диссоциируют в растворе многие соли неорганических кислот, некоторые кислоты и основания. Неполная электролитическая диссоциация наблюдается для солей, катионы которых склонны к образованию ковалентных связей с анионами, например соли Ag, Cd, Zn. Некоторые многоосновные кислоты, например H2SO4, полностью диссоциируют лишь в отношении отщепления одного иона Н+, а дальнейшая диссоциация затруднена. Разбавленные растворы слабых электролитов по своим свойствам близки к идеальным растворам, для них в формуле (1) коэффициент активности можно считать равными 1. Тогда формула (1) переходит в закон разведения Оствальда:

в котором а можно заменить отношением где и -соответственно эквивалентная электропроводность раствора при данной концентрации и при бесконечном разведении. В соответствии с законом Оствальда с уменьшением концентрации раствора степень диссоциации а и эквивалентная электропроводность возрастают, причем при бесконечном разведении и Растворы сильных электролитов не являются идеальными и для их описания необходим учет межионного взаимодействия даже в области предельного разведения. При определенных условиях, например в растворителях с малой диэлектрической проницаемостью, при низких температурах или при образовании многовалентных ионов, благодаря сильному электростатическому притяжению противоположно заряженных ионов могут образовываться ионные ассоциаты, простейшими из которых являются ионные пары.

Равновесие между сольватированными ионами и ионными парами характеризуется константой диссоциации, аналогично исходному распаду молекул, или обратной ей величиной — константой ассоциации. В приближении электростатического взаимодействия между ионами константа диссоциации контактных ионных пар, образованных двумя ионами с радиусами r+ и r. и зарядовыми числами z+ и z-, может быть рассчитана по формуле:

где е — элементарный электрический заряд; k — постоянная Больцмана; электрическая постоянная (диэлектрическая проницаемость вакуума) ; — диэлектрическая проницаемость растворителя; Т — абс. температура.

Понятие электролитической диссоциации было введено С. Аррениусом в 1887. Электролитическая диссоциация играет важную роль во многих природных и производств, процессах, определяя как свойства растворов электролитов, так и особенности происходящих в них процессов.

Электролиты. Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам.

Из этого выражения очевидно, что а может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.Сильные и слабые электролиты. В зависимости от степени диссоциации различают электролиты сильные и слабые. Электролиты со степенью диссоциации больше 30% обычно называют сильными, со степенью диссоциации от 3 до 30% — средними, менее 3% — слабыми электролитами.К сильным электролитам относятся почти все соли, некоторые кислоты (НСl, HBr, HI, НNО3, НсlO4, Н2SO4(разб.)) и некоторые основания (LiОН, NaOH, КОН, Са(ОН)2, Sr(OH)2, Ва(ОН)2). К слабым электролитам относится большинство кислот (особенно органических) и оснований.Степень диссоциации как сильных, так и слабых электролитов зависит от концентрации раствора (степень диссоциации тем выше, чем более разбавлен раствор). Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:A K « A- + K+.

Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как

где К — константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.

Диапазон констант равновесия для разных реакций очень большой — от 10-16 до 1015. Например, высокое значение К для реакции

означает, что если в раствор, содержащий ионы серебра Ag+, внести металлическую медь, то в момент достижения равновесия концентрация ионов меди [Cu2+] намного больше, чем квадрат концентрации ионов серебра [Ag+]2. Напротив, низкое значение К в реакции

говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.

Обратите особое внимание на форму записи выражений для константы равновесия. Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К1). Так, для реакции меди с серебром неправильным будет выражение

Правильной будет следующая форма записи:

Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия. Концентрации меди и серебра определяются их плотностью и не могут быть изменены. Поэтому эти концентрации нет смысла учитывать при расчете константы равновесия.Аналогично объясняются выражения констант равновесия при растворении AgCl и AgI.

Разбавленные растворы электролитов – солей, оснований, кислот в воде – показывают систематические отклонения от свойств идеальных растворов. Эти отклонения связаны с тем, что молекулы электролита в водном растворе распадаются на ионы, и в единице объёма раствора будет содержаться большее число частиц, чем в исходной загрузке соли, кислоты, основания. Для расчета свойств разбавленных растворов электролитов необходимо уравнения законов идеальных растворов исправить, введя в них коэффициент, учитывающий изменение числа частиц в растворе вследствие диссоциации или ассоциации растворенного вещества. Этот коэффициент обозначают i и называют изотоническим коэффициентом. Он показывает отношение числа частиц, образующихся в растворе, к числу частиц в исходной порции вещества. Для электролитов:

Читайте так же:  Ответчик не платит алименты

N1 – число образовавшихся ионов или распавшихся молекул

N(1-б) – число нераспавшихся молекул

У Ni = N — Nб +Nб +Nб i= У Ni/N = 1+б

если исходные молекулы распадаются на н новых частиц, то

Источник: http://megaobuchalka.ru/13/45488.html

Электролитическая диссоциация

Причину отклонения растворов электролитов от законов Рауля и Вант-Гоффа впервые объяснил шведский ученый С. Аррениус. Он показал, что электролиты за счет действия молекул растворителя распадаются на ионы. Этот процесс приводит к увеличению реального числа частиц растворенного вещества.

Изотонический коэффициент показывает, во сколько раз реальное число частиц растворенного вещества больше, чем теоретически ожидаемое (если предполагать, что вещество в растворе присутствует только в виде молекул).

Для идеальных растворов электролитов i >1.

Коэффициент Вант-Гоффа показывает также, во сколько раз наблюдаемое опытное значение росм., Dtкип., Dtзам., больше теоретически вычисленного, т.е.:

Максимально значение изотонического коэффициента (imax) для любого электролита будет при этом равно числу ионов, которые образуются при полной диссоциации его молекулы (или формульной единицы), т.к. именно во столько раз возрастет число частиц электролита в растворе.

Сванте Аррениус (1859 – 1927). Шведский физикохимик, основные работы которого посвящены учению о растворах и кинетике химических реакций. Он получил Нобелевскую премию по химии в 1903 году за создание теории электролитической диссоциации. Также им была разработана одна из наиболее известных теорий кислот и оснований. Однако еще большую известность имеют его работы в области химической кинетики. С. Аррениус высказал мысль, что реакционными являются не все, а только активные молекулы. Он ввел понятие энергии активации и вывел уравнение зависимости константы скорости реакции от температуры, носящее его имя.

В реальных растворах диссоциация часто протекает не полностью, особенно если электролит является слабым.

Кроме того, наблюдаются межионные взаимодействия, приводящие к уменьшению числа кинетически активных частиц.

В этом случае величина i будет меньше его возможного максимального значения и будет зависеть от степени диссоциации электролита:

где α – степень диссоциации электролита (в долях единицы); m – число ионов, образующихся при полном распаде одной молекулы или одной формульной единицы электролита.

Таким образом, из двух растворов однотипных электролитов (т.е. распадающихся на одно и то же число ионов) с одинаковой молярной концентрацией изотонический коэффициент будет больше в растворе электролита с более высокой степенью диссоциации α. Соответственно, и росм., Dtкип., Dtзам. для такого раствора тоже будут иметь большие значения.

Если же молярная концентрация и степень диссоциации электролитов разного типа в растворе одинаковые, то значение i будет выше для электролита, диссоциирующего на большее число ионов m.

Электролиты и неэлектролиты. Теория
электролитической диссоциации

Все вещества делятся на 2 большие группы: электролиты и неэлектролиты.

Электролитами

называются вещества (исключая металлы), растворы или расплавы которых проводят электрический ток. К электролитам относятся соединения, образованные ионными или ковалентными полярными связями. Это сложные вещества: соли, основания, кислоты, оксиды металлов (проводят электрический ток только в расплавах).

Неэлектролитами

называются вещества, растворы или расплавы которых электрический ток не проводят. К ним относятся простые и сложные вещества, образованные малополярными или неполярными ковалентными связями.

Свойства растворов и расплавов электролитов впервые объяснил в конце XIX века шведский учёный Сванте Аррениус. Им была создана специальная теория электролитической диссоциации, основные положения которой, доработанные и развитые другими учёными, в настоящее время формулируются следующим образом.

1. Молекулы (или формульные единицы) электролитов в растворах или расплавах распадаются на положительно и отрицательно заряженные ионы. Этот процесс называется электролитической диссоциацией. Общая сумма зарядов положительных ионов равна сумме зарядов отрицательных ионов, поэтому растворы или расплавы электролитов в целом остаются электронейтральными.

Ионы могут быть как простые, состоящие только из одного атома (Na + , Cu 2+ , Cl – , S 2- ), так и сложные, состоящие из атомов нескольких элементов (SO4 2– , PO4 3– , NH4 + , [Al(OH)4] – ).

Простые ионы по своим физическим, химическим и физиологическим свойствам существенно отличаются от нейтральных атомов, из которых они образовались. В первую очередь, ионы являются гораздо более устойчивыми частицами, чем нейтральные атомы, и могут существовать в растворах или расплавах неограничено долгое время, не вступая в необратимое взаимодействие с окружающей средой.

Такое различие в свойствах атомов и ионов одного и того же элемента объясняется разным электронным строением этих частиц.

Так, простые ионы s- и p-элементов находятся в более устойчивом состоянии, чем нейтральные атомы, потому что имеют завершённую электронную конфигурацию внешнего слоя, например:

Na o – 1ē ® Na +
1s 2 2s 2 2p 6 3s 1 1s 2 2s 2 2p 6
нейтральный атом натрия; на внешнем электронном слое находится один электрон положительно заряженный ион натрия; на внешнем электронном слое находится 8 электронов (как у ближайшего благородного газа неона)
F o + 1ē ® F –
1s 2 2s 2 2p 5 1s 2 2s 2 2p 6
нейтральный атом фтора; на внешнем электронном слое находится 7 электронов отрицательно заряженный ион фтора; на внешнем электронном слое находится 8 электронов

Распад электролитов на ионы в расплавах осуществляется за счёт действия высоких температур, а в растворах за счёт действия молекул растворителя.

Читайте так же:  Отпуск с последующим увольнением сотрудника полиции

Особенностью ионных соединений является то, что в узлах их кристаллической решётки имеются уже готовые ионы, и в процессе растворения таких веществ диполям растворителя (воды) остаётся только разрушить эту ионную решётку (рис. 18).

Вещества, образованные полярными ковалентными связями, переходят в раствор в виде отдельных молекул, которые, как и молекулы Н2О, представляют собой диполи, например:

В этом случае диполи Н2О, ориентируясь соответствующим образом вокруг растворенной молекулы электролита, вызывают в ней дальнейшую поляризацию ковалентной связи, а затем и её окончательный гетеролитический разрыв (рис. 29).

Источник: http://studopedia.ru/3_18089_elektroliticheskaya-dissotsiatsiya.html

Электролитическая диссоциация (общие сведения, процесс, свойства, термин, применение)

Общие сведения

Электролитическая диссоциация (греч. Electron — янтарь + lysis — разложение, распад; лат. Dissoсiatio — разъединение, разделение) — это процесс распада молекул или кристаллов веществ на ионы под действием полярных молекул растворителя. Наряду с полярностью молекул растворителя важное значение имеет его диэлектрическая проницаемость (ε). Диэлектрическая проницаемость растворителя показывает, во сколько раз сила взаимодействия между двумя зарядами в данной среде меньше, чем в вакууме.

Терминология

Электролиты (греч. Elektron — янтарь + lytos — диван, растворяется) — жидкие или твердые вещества и системы, в которых наличие ионов приводит к их электропроводность. Другое более узкое определение электролитов — вещества, растворы или расплавы которых проводят электрический ток за счет ионов, образующихся в результате электролитической диссоциации. Электролиты в растворах по-разному диссоциируют на ионы. Количественной характеристикой распада молекул на ионы является степень диссоциации α. В растворах слабых электролитов степень диссоциации меньше 3%.

Электролиты средней силы имеют значение α более 3% и менее 30%, α сильных электролитов — более 30%. Сильными электролитами являются растворимые основания (щелочи): LiOH, NaOH, KOH, RbOH, CsOH, FrOH, Ca (OH) 2, Sr (OH) 2 i Ba (OH) 2; сильные минеральные кислоты: HCl, HBr, HI, HNO3, H2SO4, HClO3, HClO4, HMnO4 и растворимые соли. К электролитов средней силы относятся некоторые органические кислоты (НСООН, Н2С2О4), минеральные кислоты (HNO2, H2SO3, H3PO4, HF), основы Mg (OH) 2, TИOH и соли — CdCl2, ZnCl2, HgCl2. К слабым электролитам относятся малорастворимые основания, амфотерные гидроксиды, слабые минеральные кислоты (H2S, HCN, H2CO3, H3BO3, H2SiO3), почти все органические кислоты, вода, гидрат аммиака.

По количеству ионов, на которые распадается в растворе 1 М вещества, различают бинарные электролиты (диссоциируют на 2 ионы), например. NaCl, KNO3, AgNO3 и тому подобное; тройные (диссоциируют на 3 ионы) — CaCl2, Na2SO4, Pb (NO3) 2; многоионные — Al2 (SO4) 3, CrCl3, SnCl4 и др.

Свойства электролитов

Электролиты хорошо растворяются и диссоциируют в Н2О (ε = 81), СН3СООН (ε = 57), слабее — в С2Н5ОН (ε = 21), плохо в C6H6 (ε = 2,5) и других неполярных растворителях. Классическую теорию электролитической диссоциации разработали С.Аррениус и В. Оствальд в 80-х годах XIX в. Согласно этой теории вещества в растворах лишь частично диссоциируют на ионы, то есть процесс диссоциации является обратимым, поскольку через некоторое время в растворе устанавливается равновесие между молекулами вещества и ионами, на которые она распадается. Динамическое равновесие между недиссоциированных молекулами и ионами подлежит закону действующих масс. Например, электролитическая диссоциация бинарного электролита КА осуществляется по уравнению: КА 2arrow.eps К + + А-. Константа диссоциации КД определяется равновесными концентрациями катионов [К +], анионов [А-] и недиссоциированных молекул [КА].

Константа диссоциации

Константа диссоциации является количественной мерой диссоциации электролита. Чем больше значение КД электролита, тем лучше он распадается в растворе и тем больше концентрация ионов.

Значение КД зависит от природы электролита, природы растворителя и температуры. Значение КД определяют с помощью экспериментальных методов. Количественной характеристикой распада молекул на ионы является степень электролитической диссоциации α, которую выражают в процентах или долях единицы. Степень диссоциации равна отношению числа молекул электролита, распавшихся в растворе на ионы n, к общему числу растворения молекул N: α = n-N или α = n-N • 100%. Величина α зависит от природы растворенного вещества, природы растворителя, температуры раствора и его концентрации. Напр. α 0,1 М водных растворов CH3COOH i HCN при 18 ° С составляют соответственно 0,014 и 0,0001; 0,1 и 0,01 М растворов CH3COOH — 0,014 и 0,043. Степень диссоциации слабых электролитов увеличивается при повышении температуры примерно до 60 ° С, а затем уменьшается. Очень значительная зависимость α от природы растворителя. Раствор HCl в полярном растворителе (воде) является сильным электролитом, а в неполярной (бензине) — слабым. В растворах сильных электролитов с повышением температуры α уменьшается. Между КД и степенью электролитической диссоциации α существует связь, известный под названием закона разбавления (разведения) Оствальда.

Классическая теория электролитической диссоциации

Классическая теория электролитической диссоциации выполняется только для растворов слабых электролитов. Сильные электролиты при растворении в воде полностью диссоциируют на ионы — процесс их диссоциации является необратимым (α = 1 или 100%). Но экспериментально установлено, что степень диссоциации концентрированных растворов сильных электролитов α

© VetConsult+, 2015. Все права защищены. Использование любых материалов, размещённых на сайте, разрешается при условии ссылки на ресурс. При копировании либо частичном использовании материалов со страниц сайта обязательно размещать прямую открытую для поисковых систем гиперссылку, расположенную в подзаголовке или в первом абзаце статьи.

Видео удалено.
Видео (кликните для воспроизведения).

Источник: http://vetconsultplus.ru/%D0%AD/elektroliticheskaya-dissotsiatsiya-svojstva-termin-primenenie.html

Ученый который ввел понятие степени электролитической диссоциации
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here